/* * aQuantia Corporation Network Driver * Copyright (C) 2014-2017 aQuantia Corporation. All rights reserved * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. */ /* File aq_ring.c: Definition of functions for Rx/Tx rings. */ #include "aq_ring.h" #include "aq_nic.h" #include "aq_hw.h" #include #include static struct aq_ring_s *aq_ring_alloc(struct aq_ring_s *self, struct aq_nic_s *aq_nic) { int err = 0; self->buff_ring = kcalloc(self->size, sizeof(struct aq_ring_buff_s), GFP_KERNEL); if (!self->buff_ring) { err = -ENOMEM; goto err_exit; } self->dx_ring = dma_alloc_coherent(aq_nic_get_dev(aq_nic), self->size * self->dx_size, &self->dx_ring_pa, GFP_KERNEL); if (!self->dx_ring) { err = -ENOMEM; goto err_exit; } err_exit: if (err < 0) { aq_ring_free(self); self = NULL; } return self; } struct aq_ring_s *aq_ring_tx_alloc(struct aq_ring_s *self, struct aq_nic_s *aq_nic, unsigned int idx, struct aq_nic_cfg_s *aq_nic_cfg) { int err = 0; self->aq_nic = aq_nic; self->idx = idx; self->size = aq_nic_cfg->txds; self->dx_size = aq_nic_cfg->aq_hw_caps->txd_size; self = aq_ring_alloc(self, aq_nic); if (!self) { err = -ENOMEM; goto err_exit; } err_exit: if (err < 0) { aq_ring_free(self); self = NULL; } return self; } struct aq_ring_s *aq_ring_rx_alloc(struct aq_ring_s *self, struct aq_nic_s *aq_nic, unsigned int idx, struct aq_nic_cfg_s *aq_nic_cfg) { int err = 0; self->aq_nic = aq_nic; self->idx = idx; self->size = aq_nic_cfg->rxds; self->dx_size = aq_nic_cfg->aq_hw_caps->rxd_size; self = aq_ring_alloc(self, aq_nic); if (!self) { err = -ENOMEM; goto err_exit; } err_exit: if (err < 0) { aq_ring_free(self); self = NULL; } return self; } int aq_ring_init(struct aq_ring_s *self) { self->hw_head = 0; self->sw_head = 0; self->sw_tail = 0; return 0; } void aq_ring_tx_append_buffs(struct aq_ring_s *self, struct aq_ring_buff_s *buffer, unsigned int buffers) { if (likely(self->sw_tail + buffers < self->size)) { memcpy(&self->buff_ring[self->sw_tail], buffer, sizeof(buffer[0]) * buffers); } else { unsigned int first_part = self->size - self->sw_tail; unsigned int second_part = buffers - first_part; memcpy(&self->buff_ring[self->sw_tail], buffer, sizeof(buffer[0]) * first_part); memcpy(&self->buff_ring[0], &buffer[first_part], sizeof(buffer[0]) * second_part); } } int aq_ring_tx_clean(struct aq_ring_s *self) { struct device *dev = aq_nic_get_dev(self->aq_nic); for (; self->sw_head != self->hw_head; self->sw_head = aq_ring_next_dx(self, self->sw_head)) { struct aq_ring_buff_s *buff = &self->buff_ring[self->sw_head]; if (likely(buff->is_mapped)) { if (unlikely(buff->is_sop)) dma_unmap_single(dev, buff->pa, buff->len, DMA_TO_DEVICE); else dma_unmap_page(dev, buff->pa, buff->len, DMA_TO_DEVICE); } if (unlikely(buff->is_eop)) dev_kfree_skb_any(buff->skb); } if (aq_ring_avail_dx(self) > AQ_CFG_SKB_FRAGS_MAX) aq_nic_ndev_queue_start(self->aq_nic, self->idx); return 0; } static inline unsigned int aq_ring_dx_in_range(unsigned int h, unsigned int i, unsigned int t) { return (h < t) ? ((h < i) && (i < t)) : ((h < i) || (i < t)); } #define AQ_SKB_ALIGN SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) int aq_ring_rx_clean(struct aq_ring_s *self, int *work_done, int budget) { struct net_device *ndev = aq_nic_get_ndev(self->aq_nic); int err = 0; bool is_rsc_completed = true; for (; (self->sw_head != self->hw_head) && budget; self->sw_head = aq_ring_next_dx(self, self->sw_head), --budget, ++(*work_done)) { struct aq_ring_buff_s *buff = &self->buff_ring[self->sw_head]; struct sk_buff *skb = NULL; unsigned int next_ = 0U; unsigned int i = 0U; struct aq_ring_buff_s *buff_ = NULL; if (buff->is_error) { __free_pages(buff->page, 0); continue; } if (buff->is_cleaned) continue; if (!buff->is_eop) { for (next_ = buff->next, buff_ = &self->buff_ring[next_]; true; next_ = buff_->next, buff_ = &self->buff_ring[next_]) { is_rsc_completed = aq_ring_dx_in_range(self->sw_head, next_, self->hw_head); if (unlikely(!is_rsc_completed)) { is_rsc_completed = false; break; } if (buff_->is_eop) break; } if (!is_rsc_completed) { err = 0; goto err_exit; } } /* for single fragment packets use build_skb() */ if (buff->is_eop) { skb = build_skb(page_address(buff->page), buff->len + AQ_SKB_ALIGN); if (unlikely(!skb)) { err = -ENOMEM; goto err_exit; } skb->dev = ndev; skb_put(skb, buff->len); } else { skb = netdev_alloc_skb(ndev, ETH_HLEN); if (unlikely(!skb)) { err = -ENOMEM; goto err_exit; } skb_put(skb, ETH_HLEN); memcpy(skb->data, page_address(buff->page), ETH_HLEN); skb_add_rx_frag(skb, 0, buff->page, ETH_HLEN, buff->len - ETH_HLEN, SKB_TRUESIZE(buff->len - ETH_HLEN)); for (i = 1U, next_ = buff->next, buff_ = &self->buff_ring[next_]; true; next_ = buff_->next, buff_ = &self->buff_ring[next_], ++i) { skb_add_rx_frag(skb, i, buff_->page, 0, buff_->len, SKB_TRUESIZE(buff->len - ETH_HLEN)); buff_->is_cleaned = 1; if (buff_->is_eop) break; } } skb->protocol = eth_type_trans(skb, ndev); if (unlikely(buff->is_cso_err)) { ++self->stats.rx.errors; __skb_mark_checksum_bad(skb); } else { if (buff->is_ip_cso) { __skb_incr_checksum_unnecessary(skb); if (buff->is_udp_cso || buff->is_tcp_cso) __skb_incr_checksum_unnecessary(skb); } else { skb->ip_summed = CHECKSUM_NONE; } } skb_set_hash(skb, buff->rss_hash, buff->is_hash_l4 ? PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_NONE); skb_record_rx_queue(skb, self->idx); netif_receive_skb(skb); ++self->stats.rx.packets; self->stats.rx.bytes += skb->len; } err_exit: return err; } int aq_ring_rx_fill(struct aq_ring_s *self) { struct aq_ring_buff_s *buff = NULL; int err = 0; int i = 0; for (i = aq_ring_avail_dx(self); i--; self->sw_tail = aq_ring_next_dx(self, self->sw_tail)) { buff = &self->buff_ring[self->sw_tail]; buff->flags = 0U; buff->len = AQ_CFG_RX_FRAME_MAX; buff->page = alloc_pages(GFP_ATOMIC | __GFP_COLD | __GFP_COMP, 0); if (!buff->page) { err = -ENOMEM; goto err_exit; } buff->pa = dma_map_page(aq_nic_get_dev(self->aq_nic), buff->page, 0, AQ_CFG_RX_FRAME_MAX, DMA_FROM_DEVICE); err = dma_mapping_error(aq_nic_get_dev(self->aq_nic), buff->pa); if (err < 0) goto err_exit; buff = NULL; } err_exit: if (err < 0) { if (buff && buff->page) __free_pages(buff->page, 0); } return err; } void aq_ring_rx_deinit(struct aq_ring_s *self) { if (!self) goto err_exit; for (; self->sw_head != self->sw_tail; self->sw_head = aq_ring_next_dx(self, self->sw_head)) { struct aq_ring_buff_s *buff = &self->buff_ring[self->sw_head]; dma_unmap_page(aq_nic_get_dev(self->aq_nic), buff->pa, AQ_CFG_RX_FRAME_MAX, DMA_FROM_DEVICE); __free_pages(buff->page, 0); } err_exit:; } void aq_ring_tx_deinit(struct aq_ring_s *self) { if (!self) goto err_exit; for (; self->sw_head != self->sw_tail; self->sw_head = aq_ring_next_dx(self, self->sw_head)) { struct aq_ring_buff_s *buff = &self->buff_ring[self->sw_head]; struct device *ndev = aq_nic_get_dev(self->aq_nic); if (likely(buff->is_mapped)) { if (unlikely(buff->is_sop)) { dma_unmap_single(ndev, buff->pa, buff->len, DMA_TO_DEVICE); } else { dma_unmap_page(ndev, buff->pa, buff->len, DMA_TO_DEVICE); } } if (unlikely(buff->is_eop)) dev_kfree_skb_any(buff->skb); } err_exit:; } void aq_ring_free(struct aq_ring_s *self) { if (!self) goto err_exit; kfree(self->buff_ring); if (self->dx_ring) dma_free_coherent(aq_nic_get_dev(self->aq_nic), self->size * self->dx_size, self->dx_ring, self->dx_ring_pa); err_exit:; }