/* * Copyright (c) 2005-2011 Atheros Communications Inc. * Copyright (c) 2011-2013 Qualcomm Atheros, Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include "core.h" #include "htc.h" #include "htt.h" #include "txrx.h" #include "debug.h" #include "trace.h" #include "mac.h" #include #define HTT_RX_RING_SIZE HTT_RX_RING_SIZE_MAX #define HTT_RX_RING_FILL_LEVEL (((HTT_RX_RING_SIZE) / 2) - 1) /* when under memory pressure rx ring refill may fail and needs a retry */ #define HTT_RX_RING_REFILL_RETRY_MS 50 #define HTT_RX_RING_REFILL_RESCHED_MS 5 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb); static struct sk_buff * ath10k_htt_rx_find_skb_paddr(struct ath10k *ar, u32 paddr) { struct ath10k_skb_rxcb *rxcb; hash_for_each_possible(ar->htt.rx_ring.skb_table, rxcb, hlist, paddr) if (rxcb->paddr == paddr) return ATH10K_RXCB_SKB(rxcb); WARN_ON_ONCE(1); return NULL; } static void ath10k_htt_rx_ring_free(struct ath10k_htt *htt) { struct sk_buff *skb; struct ath10k_skb_rxcb *rxcb; struct hlist_node *n; int i; if (htt->rx_ring.in_ord_rx) { hash_for_each_safe(htt->rx_ring.skb_table, i, n, rxcb, hlist) { skb = ATH10K_RXCB_SKB(rxcb); dma_unmap_single(htt->ar->dev, rxcb->paddr, skb->len + skb_tailroom(skb), DMA_FROM_DEVICE); hash_del(&rxcb->hlist); dev_kfree_skb_any(skb); } } else { for (i = 0; i < htt->rx_ring.size; i++) { skb = htt->rx_ring.netbufs_ring[i]; if (!skb) continue; rxcb = ATH10K_SKB_RXCB(skb); dma_unmap_single(htt->ar->dev, rxcb->paddr, skb->len + skb_tailroom(skb), DMA_FROM_DEVICE); dev_kfree_skb_any(skb); } } htt->rx_ring.fill_cnt = 0; hash_init(htt->rx_ring.skb_table); memset(htt->rx_ring.netbufs_ring, 0, htt->rx_ring.size * sizeof(htt->rx_ring.netbufs_ring[0])); } static int __ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num) { struct htt_rx_desc *rx_desc; struct ath10k_skb_rxcb *rxcb; struct sk_buff *skb; dma_addr_t paddr; int ret = 0, idx; /* The Full Rx Reorder firmware has no way of telling the host * implicitly when it copied HTT Rx Ring buffers to MAC Rx Ring. * To keep things simple make sure ring is always half empty. This * guarantees there'll be no replenishment overruns possible. */ BUILD_BUG_ON(HTT_RX_RING_FILL_LEVEL >= HTT_RX_RING_SIZE / 2); idx = __le32_to_cpu(*htt->rx_ring.alloc_idx.vaddr); while (num > 0) { skb = dev_alloc_skb(HTT_RX_BUF_SIZE + HTT_RX_DESC_ALIGN); if (!skb) { ret = -ENOMEM; goto fail; } if (!IS_ALIGNED((unsigned long)skb->data, HTT_RX_DESC_ALIGN)) skb_pull(skb, PTR_ALIGN(skb->data, HTT_RX_DESC_ALIGN) - skb->data); /* Clear rx_desc attention word before posting to Rx ring */ rx_desc = (struct htt_rx_desc *)skb->data; rx_desc->attention.flags = __cpu_to_le32(0); paddr = dma_map_single(htt->ar->dev, skb->data, skb->len + skb_tailroom(skb), DMA_FROM_DEVICE); if (unlikely(dma_mapping_error(htt->ar->dev, paddr))) { dev_kfree_skb_any(skb); ret = -ENOMEM; goto fail; } rxcb = ATH10K_SKB_RXCB(skb); rxcb->paddr = paddr; htt->rx_ring.netbufs_ring[idx] = skb; htt->rx_ring.paddrs_ring[idx] = __cpu_to_le32(paddr); htt->rx_ring.fill_cnt++; if (htt->rx_ring.in_ord_rx) { hash_add(htt->rx_ring.skb_table, &ATH10K_SKB_RXCB(skb)->hlist, (u32)paddr); } num--; idx++; idx &= htt->rx_ring.size_mask; } fail: /* * Make sure the rx buffer is updated before available buffer * index to avoid any potential rx ring corruption. */ mb(); *htt->rx_ring.alloc_idx.vaddr = __cpu_to_le32(idx); return ret; } static int ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num) { lockdep_assert_held(&htt->rx_ring.lock); return __ath10k_htt_rx_ring_fill_n(htt, num); } static void ath10k_htt_rx_msdu_buff_replenish(struct ath10k_htt *htt) { int ret, num_deficit, num_to_fill; /* Refilling the whole RX ring buffer proves to be a bad idea. The * reason is RX may take up significant amount of CPU cycles and starve * other tasks, e.g. TX on an ethernet device while acting as a bridge * with ath10k wlan interface. This ended up with very poor performance * once CPU the host system was overwhelmed with RX on ath10k. * * By limiting the number of refills the replenishing occurs * progressively. This in turns makes use of the fact tasklets are * processed in FIFO order. This means actual RX processing can starve * out refilling. If there's not enough buffers on RX ring FW will not * report RX until it is refilled with enough buffers. This * automatically balances load wrt to CPU power. * * This probably comes at a cost of lower maximum throughput but * improves the average and stability. */ spin_lock_bh(&htt->rx_ring.lock); num_deficit = htt->rx_ring.fill_level - htt->rx_ring.fill_cnt; num_to_fill = min(ATH10K_HTT_MAX_NUM_REFILL, num_deficit); num_deficit -= num_to_fill; ret = ath10k_htt_rx_ring_fill_n(htt, num_to_fill); if (ret == -ENOMEM) { /* * Failed to fill it to the desired level - * we'll start a timer and try again next time. * As long as enough buffers are left in the ring for * another A-MPDU rx, no special recovery is needed. */ mod_timer(&htt->rx_ring.refill_retry_timer, jiffies + msecs_to_jiffies(HTT_RX_RING_REFILL_RETRY_MS)); } else if (num_deficit > 0) { mod_timer(&htt->rx_ring.refill_retry_timer, jiffies + msecs_to_jiffies(HTT_RX_RING_REFILL_RESCHED_MS)); } spin_unlock_bh(&htt->rx_ring.lock); } static void ath10k_htt_rx_ring_refill_retry(unsigned long arg) { struct ath10k_htt *htt = (struct ath10k_htt *)arg; ath10k_htt_rx_msdu_buff_replenish(htt); } int ath10k_htt_rx_ring_refill(struct ath10k *ar) { struct ath10k_htt *htt = &ar->htt; int ret; spin_lock_bh(&htt->rx_ring.lock); ret = ath10k_htt_rx_ring_fill_n(htt, (htt->rx_ring.fill_level - htt->rx_ring.fill_cnt)); spin_unlock_bh(&htt->rx_ring.lock); if (ret) ath10k_htt_rx_ring_free(htt); return ret; } void ath10k_htt_rx_free(struct ath10k_htt *htt) { del_timer_sync(&htt->rx_ring.refill_retry_timer); skb_queue_purge(&htt->rx_compl_q); skb_queue_purge(&htt->rx_in_ord_compl_q); skb_queue_purge(&htt->tx_fetch_ind_q); ath10k_htt_rx_ring_free(htt); dma_free_coherent(htt->ar->dev, (htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring)), htt->rx_ring.paddrs_ring, htt->rx_ring.base_paddr); dma_free_coherent(htt->ar->dev, sizeof(*htt->rx_ring.alloc_idx.vaddr), htt->rx_ring.alloc_idx.vaddr, htt->rx_ring.alloc_idx.paddr); kfree(htt->rx_ring.netbufs_ring); } static inline struct sk_buff *ath10k_htt_rx_netbuf_pop(struct ath10k_htt *htt) { struct ath10k *ar = htt->ar; int idx; struct sk_buff *msdu; lockdep_assert_held(&htt->rx_ring.lock); if (htt->rx_ring.fill_cnt == 0) { ath10k_warn(ar, "tried to pop sk_buff from an empty rx ring\n"); return NULL; } idx = htt->rx_ring.sw_rd_idx.msdu_payld; msdu = htt->rx_ring.netbufs_ring[idx]; htt->rx_ring.netbufs_ring[idx] = NULL; htt->rx_ring.paddrs_ring[idx] = 0; idx++; idx &= htt->rx_ring.size_mask; htt->rx_ring.sw_rd_idx.msdu_payld = idx; htt->rx_ring.fill_cnt--; dma_unmap_single(htt->ar->dev, ATH10K_SKB_RXCB(msdu)->paddr, msdu->len + skb_tailroom(msdu), DMA_FROM_DEVICE); ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ", msdu->data, msdu->len + skb_tailroom(msdu)); return msdu; } /* return: < 0 fatal error, 0 - non chained msdu, 1 chained msdu */ static int ath10k_htt_rx_amsdu_pop(struct ath10k_htt *htt, struct sk_buff_head *amsdu) { struct ath10k *ar = htt->ar; int msdu_len, msdu_chaining = 0; struct sk_buff *msdu; struct htt_rx_desc *rx_desc; lockdep_assert_held(&htt->rx_ring.lock); for (;;) { int last_msdu, msdu_len_invalid, msdu_chained; msdu = ath10k_htt_rx_netbuf_pop(htt); if (!msdu) { __skb_queue_purge(amsdu); return -ENOENT; } __skb_queue_tail(amsdu, msdu); rx_desc = (struct htt_rx_desc *)msdu->data; /* FIXME: we must report msdu payload since this is what caller * expects now */ skb_put(msdu, offsetof(struct htt_rx_desc, msdu_payload)); skb_pull(msdu, offsetof(struct htt_rx_desc, msdu_payload)); /* * Sanity check - confirm the HW is finished filling in the * rx data. * If the HW and SW are working correctly, then it's guaranteed * that the HW's MAC DMA is done before this point in the SW. * To prevent the case that we handle a stale Rx descriptor, * just assert for now until we have a way to recover. */ if (!(__le32_to_cpu(rx_desc->attention.flags) & RX_ATTENTION_FLAGS_MSDU_DONE)) { __skb_queue_purge(amsdu); return -EIO; } msdu_len_invalid = !!(__le32_to_cpu(rx_desc->attention.flags) & (RX_ATTENTION_FLAGS_MPDU_LENGTH_ERR | RX_ATTENTION_FLAGS_MSDU_LENGTH_ERR)); msdu_len = MS(__le32_to_cpu(rx_desc->msdu_start.common.info0), RX_MSDU_START_INFO0_MSDU_LENGTH); msdu_chained = rx_desc->frag_info.ring2_more_count; if (msdu_len_invalid) msdu_len = 0; skb_trim(msdu, 0); skb_put(msdu, min(msdu_len, HTT_RX_MSDU_SIZE)); msdu_len -= msdu->len; /* Note: Chained buffers do not contain rx descriptor */ while (msdu_chained--) { msdu = ath10k_htt_rx_netbuf_pop(htt); if (!msdu) { __skb_queue_purge(amsdu); return -ENOENT; } __skb_queue_tail(amsdu, msdu); skb_trim(msdu, 0); skb_put(msdu, min(msdu_len, HTT_RX_BUF_SIZE)); msdu_len -= msdu->len; msdu_chaining = 1; } last_msdu = __le32_to_cpu(rx_desc->msdu_end.common.info0) & RX_MSDU_END_INFO0_LAST_MSDU; trace_ath10k_htt_rx_desc(ar, &rx_desc->attention, sizeof(*rx_desc) - sizeof(u32)); if (last_msdu) break; } if (skb_queue_empty(amsdu)) msdu_chaining = -1; /* * Don't refill the ring yet. * * First, the elements popped here are still in use - it is not * safe to overwrite them until the matching call to * mpdu_desc_list_next. Second, for efficiency it is preferable to * refill the rx ring with 1 PPDU's worth of rx buffers (something * like 32 x 3 buffers), rather than one MPDU's worth of rx buffers * (something like 3 buffers). Consequently, we'll rely on the txrx * SW to tell us when it is done pulling all the PPDU's rx buffers * out of the rx ring, and then refill it just once. */ return msdu_chaining; } static struct sk_buff *ath10k_htt_rx_pop_paddr(struct ath10k_htt *htt, u32 paddr) { struct ath10k *ar = htt->ar; struct ath10k_skb_rxcb *rxcb; struct sk_buff *msdu; lockdep_assert_held(&htt->rx_ring.lock); msdu = ath10k_htt_rx_find_skb_paddr(ar, paddr); if (!msdu) return NULL; rxcb = ATH10K_SKB_RXCB(msdu); hash_del(&rxcb->hlist); htt->rx_ring.fill_cnt--; dma_unmap_single(htt->ar->dev, rxcb->paddr, msdu->len + skb_tailroom(msdu), DMA_FROM_DEVICE); ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ", msdu->data, msdu->len + skb_tailroom(msdu)); return msdu; } static int ath10k_htt_rx_pop_paddr_list(struct ath10k_htt *htt, struct htt_rx_in_ord_ind *ev, struct sk_buff_head *list) { struct ath10k *ar = htt->ar; struct htt_rx_in_ord_msdu_desc *msdu_desc = ev->msdu_descs; struct htt_rx_desc *rxd; struct sk_buff *msdu; int msdu_count; bool is_offload; u32 paddr; lockdep_assert_held(&htt->rx_ring.lock); msdu_count = __le16_to_cpu(ev->msdu_count); is_offload = !!(ev->info & HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK); while (msdu_count--) { paddr = __le32_to_cpu(msdu_desc->msdu_paddr); msdu = ath10k_htt_rx_pop_paddr(htt, paddr); if (!msdu) { __skb_queue_purge(list); return -ENOENT; } __skb_queue_tail(list, msdu); if (!is_offload) { rxd = (void *)msdu->data; trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd)); skb_put(msdu, sizeof(*rxd)); skb_pull(msdu, sizeof(*rxd)); skb_put(msdu, __le16_to_cpu(msdu_desc->msdu_len)); if (!(__le32_to_cpu(rxd->attention.flags) & RX_ATTENTION_FLAGS_MSDU_DONE)) { ath10k_warn(htt->ar, "tried to pop an incomplete frame, oops!\n"); return -EIO; } } msdu_desc++; } return 0; } int ath10k_htt_rx_alloc(struct ath10k_htt *htt) { struct ath10k *ar = htt->ar; dma_addr_t paddr; void *vaddr; size_t size; struct timer_list *timer = &htt->rx_ring.refill_retry_timer; htt->rx_confused = false; /* XXX: The fill level could be changed during runtime in response to * the host processing latency. Is this really worth it? */ htt->rx_ring.size = HTT_RX_RING_SIZE; htt->rx_ring.size_mask = htt->rx_ring.size - 1; htt->rx_ring.fill_level = HTT_RX_RING_FILL_LEVEL; if (!is_power_of_2(htt->rx_ring.size)) { ath10k_warn(ar, "htt rx ring size is not power of 2\n"); return -EINVAL; } htt->rx_ring.netbufs_ring = kzalloc(htt->rx_ring.size * sizeof(struct sk_buff *), GFP_KERNEL); if (!htt->rx_ring.netbufs_ring) goto err_netbuf; size = htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring); vaddr = dma_alloc_coherent(htt->ar->dev, size, &paddr, GFP_KERNEL); if (!vaddr) goto err_dma_ring; htt->rx_ring.paddrs_ring = vaddr; htt->rx_ring.base_paddr = paddr; vaddr = dma_alloc_coherent(htt->ar->dev, sizeof(*htt->rx_ring.alloc_idx.vaddr), &paddr, GFP_KERNEL); if (!vaddr) goto err_dma_idx; htt->rx_ring.alloc_idx.vaddr = vaddr; htt->rx_ring.alloc_idx.paddr = paddr; htt->rx_ring.sw_rd_idx.msdu_payld = htt->rx_ring.size_mask; *htt->rx_ring.alloc_idx.vaddr = 0; /* Initialize the Rx refill retry timer */ setup_timer(timer, ath10k_htt_rx_ring_refill_retry, (unsigned long)htt); spin_lock_init(&htt->rx_ring.lock); htt->rx_ring.fill_cnt = 0; htt->rx_ring.sw_rd_idx.msdu_payld = 0; hash_init(htt->rx_ring.skb_table); skb_queue_head_init(&htt->rx_compl_q); skb_queue_head_init(&htt->rx_in_ord_compl_q); skb_queue_head_init(&htt->tx_fetch_ind_q); atomic_set(&htt->num_mpdus_ready, 0); ath10k_dbg(ar, ATH10K_DBG_BOOT, "htt rx ring size %d fill_level %d\n", htt->rx_ring.size, htt->rx_ring.fill_level); return 0; err_dma_idx: dma_free_coherent(htt->ar->dev, (htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring)), htt->rx_ring.paddrs_ring, htt->rx_ring.base_paddr); err_dma_ring: kfree(htt->rx_ring.netbufs_ring); err_netbuf: return -ENOMEM; } static int ath10k_htt_rx_crypto_param_len(struct ath10k *ar, enum htt_rx_mpdu_encrypt_type type) { switch (type) { case HTT_RX_MPDU_ENCRYPT_NONE: return 0; case HTT_RX_MPDU_ENCRYPT_WEP40: case HTT_RX_MPDU_ENCRYPT_WEP104: return IEEE80211_WEP_IV_LEN; case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC: case HTT_RX_MPDU_ENCRYPT_TKIP_WPA: return IEEE80211_TKIP_IV_LEN; case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2: return IEEE80211_CCMP_HDR_LEN; case HTT_RX_MPDU_ENCRYPT_WEP128: case HTT_RX_MPDU_ENCRYPT_WAPI: break; } ath10k_warn(ar, "unsupported encryption type %d\n", type); return 0; } #define MICHAEL_MIC_LEN 8 static int ath10k_htt_rx_crypto_tail_len(struct ath10k *ar, enum htt_rx_mpdu_encrypt_type type) { switch (type) { case HTT_RX_MPDU_ENCRYPT_NONE: return 0; case HTT_RX_MPDU_ENCRYPT_WEP40: case HTT_RX_MPDU_ENCRYPT_WEP104: return IEEE80211_WEP_ICV_LEN; case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC: case HTT_RX_MPDU_ENCRYPT_TKIP_WPA: return IEEE80211_TKIP_ICV_LEN; case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2: return IEEE80211_CCMP_MIC_LEN; case HTT_RX_MPDU_ENCRYPT_WEP128: case HTT_RX_MPDU_ENCRYPT_WAPI: break; } ath10k_warn(ar, "unsupported encryption type %d\n", type); return 0; } struct amsdu_subframe_hdr { u8 dst[ETH_ALEN]; u8 src[ETH_ALEN]; __be16 len; } __packed; #define GROUP_ID_IS_SU_MIMO(x) ((x) == 0 || (x) == 63) static void ath10k_htt_rx_h_rates(struct ath10k *ar, struct ieee80211_rx_status *status, struct htt_rx_desc *rxd) { struct ieee80211_supported_band *sband; u8 cck, rate, bw, sgi, mcs, nss; u8 preamble = 0; u8 group_id; u32 info1, info2, info3; info1 = __le32_to_cpu(rxd->ppdu_start.info1); info2 = __le32_to_cpu(rxd->ppdu_start.info2); info3 = __le32_to_cpu(rxd->ppdu_start.info3); preamble = MS(info1, RX_PPDU_START_INFO1_PREAMBLE_TYPE); switch (preamble) { case HTT_RX_LEGACY: /* To get legacy rate index band is required. Since band can't * be undefined check if freq is non-zero. */ if (!status->freq) return; cck = info1 & RX_PPDU_START_INFO1_L_SIG_RATE_SELECT; rate = MS(info1, RX_PPDU_START_INFO1_L_SIG_RATE); rate &= ~RX_PPDU_START_RATE_FLAG; sband = &ar->mac.sbands[status->band]; status->rate_idx = ath10k_mac_hw_rate_to_idx(sband, rate, cck); break; case HTT_RX_HT: case HTT_RX_HT_WITH_TXBF: /* HT-SIG - Table 20-11 in info2 and info3 */ mcs = info2 & 0x1F; nss = mcs >> 3; bw = (info2 >> 7) & 1; sgi = (info3 >> 7) & 1; status->rate_idx = mcs; status->flag |= RX_FLAG_HT; if (sgi) status->flag |= RX_FLAG_SHORT_GI; if (bw) status->flag |= RX_FLAG_40MHZ; break; case HTT_RX_VHT: case HTT_RX_VHT_WITH_TXBF: /* VHT-SIG-A1 in info2, VHT-SIG-A2 in info3 TODO check this */ bw = info2 & 3; sgi = info3 & 1; group_id = (info2 >> 4) & 0x3F; if (GROUP_ID_IS_SU_MIMO(group_id)) { mcs = (info3 >> 4) & 0x0F; nss = ((info2 >> 10) & 0x07) + 1; } else { /* Hardware doesn't decode VHT-SIG-B into Rx descriptor * so it's impossible to decode MCS. Also since * firmware consumes Group Id Management frames host * has no knowledge regarding group/user position * mapping so it's impossible to pick the correct Nsts * from VHT-SIG-A1. * * Bandwidth and SGI are valid so report the rateinfo * on best-effort basis. */ mcs = 0; nss = 1; } if (mcs > 0x09) { ath10k_warn(ar, "invalid MCS received %u\n", mcs); ath10k_warn(ar, "rxd %08x mpdu start %08x %08x msdu start %08x %08x ppdu start %08x %08x %08x %08x %08x\n", __le32_to_cpu(rxd->attention.flags), __le32_to_cpu(rxd->mpdu_start.info0), __le32_to_cpu(rxd->mpdu_start.info1), __le32_to_cpu(rxd->msdu_start.common.info0), __le32_to_cpu(rxd->msdu_start.common.info1), rxd->ppdu_start.info0, __le32_to_cpu(rxd->ppdu_start.info1), __le32_to_cpu(rxd->ppdu_start.info2), __le32_to_cpu(rxd->ppdu_start.info3), __le32_to_cpu(rxd->ppdu_start.info4)); ath10k_warn(ar, "msdu end %08x mpdu end %08x\n", __le32_to_cpu(rxd->msdu_end.common.info0), __le32_to_cpu(rxd->mpdu_end.info0)); ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "rx desc msdu payload: ", rxd->msdu_payload, 50); } status->rate_idx = mcs; status->vht_nss = nss; if (sgi) status->flag |= RX_FLAG_SHORT_GI; switch (bw) { /* 20MHZ */ case 0: break; /* 40MHZ */ case 1: status->flag |= RX_FLAG_40MHZ; break; /* 80MHZ */ case 2: status->vht_flag |= RX_VHT_FLAG_80MHZ; } status->flag |= RX_FLAG_VHT; break; default: break; } } static struct ieee80211_channel * ath10k_htt_rx_h_peer_channel(struct ath10k *ar, struct htt_rx_desc *rxd) { struct ath10k_peer *peer; struct ath10k_vif *arvif; struct cfg80211_chan_def def; u16 peer_id; lockdep_assert_held(&ar->data_lock); if (!rxd) return NULL; if (rxd->attention.flags & __cpu_to_le32(RX_ATTENTION_FLAGS_PEER_IDX_INVALID)) return NULL; if (!(rxd->msdu_end.common.info0 & __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU))) return NULL; peer_id = MS(__le32_to_cpu(rxd->mpdu_start.info0), RX_MPDU_START_INFO0_PEER_IDX); peer = ath10k_peer_find_by_id(ar, peer_id); if (!peer) return NULL; arvif = ath10k_get_arvif(ar, peer->vdev_id); if (WARN_ON_ONCE(!arvif)) return NULL; if (ath10k_mac_vif_chan(arvif->vif, &def)) return NULL; return def.chan; } static struct ieee80211_channel * ath10k_htt_rx_h_vdev_channel(struct ath10k *ar, u32 vdev_id) { struct ath10k_vif *arvif; struct cfg80211_chan_def def; lockdep_assert_held(&ar->data_lock); list_for_each_entry(arvif, &ar->arvifs, list) { if (arvif->vdev_id == vdev_id && ath10k_mac_vif_chan(arvif->vif, &def) == 0) return def.chan; } return NULL; } static void ath10k_htt_rx_h_any_chan_iter(struct ieee80211_hw *hw, struct ieee80211_chanctx_conf *conf, void *data) { struct cfg80211_chan_def *def = data; *def = conf->def; } static struct ieee80211_channel * ath10k_htt_rx_h_any_channel(struct ath10k *ar) { struct cfg80211_chan_def def = {}; ieee80211_iter_chan_contexts_atomic(ar->hw, ath10k_htt_rx_h_any_chan_iter, &def); return def.chan; } static bool ath10k_htt_rx_h_channel(struct ath10k *ar, struct ieee80211_rx_status *status, struct htt_rx_desc *rxd, u32 vdev_id) { struct ieee80211_channel *ch; spin_lock_bh(&ar->data_lock); ch = ar->scan_channel; if (!ch) ch = ar->rx_channel; if (!ch) ch = ath10k_htt_rx_h_peer_channel(ar, rxd); if (!ch) ch = ath10k_htt_rx_h_vdev_channel(ar, vdev_id); if (!ch) ch = ath10k_htt_rx_h_any_channel(ar); if (!ch) ch = ar->tgt_oper_chan; spin_unlock_bh(&ar->data_lock); if (!ch) return false; status->band = ch->band; status->freq = ch->center_freq; return true; } static void ath10k_htt_rx_h_signal(struct ath10k *ar, struct ieee80211_rx_status *status, struct htt_rx_desc *rxd) { /* FIXME: Get real NF */ status->signal = ATH10K_DEFAULT_NOISE_FLOOR + rxd->ppdu_start.rssi_comb; status->flag &= ~RX_FLAG_NO_SIGNAL_VAL; } static void ath10k_htt_rx_h_mactime(struct ath10k *ar, struct ieee80211_rx_status *status, struct htt_rx_desc *rxd) { /* FIXME: TSF is known only at the end of PPDU, in the last MPDU. This * means all prior MSDUs in a PPDU are reported to mac80211 without the * TSF. Is it worth holding frames until end of PPDU is known? * * FIXME: Can we get/compute 64bit TSF? */ status->mactime = __le32_to_cpu(rxd->ppdu_end.common.tsf_timestamp); status->flag |= RX_FLAG_MACTIME_END; } static void ath10k_htt_rx_h_ppdu(struct ath10k *ar, struct sk_buff_head *amsdu, struct ieee80211_rx_status *status, u32 vdev_id) { struct sk_buff *first; struct htt_rx_desc *rxd; bool is_first_ppdu; bool is_last_ppdu; if (skb_queue_empty(amsdu)) return; first = skb_peek(amsdu); rxd = (void *)first->data - sizeof(*rxd); is_first_ppdu = !!(rxd->attention.flags & __cpu_to_le32(RX_ATTENTION_FLAGS_FIRST_MPDU)); is_last_ppdu = !!(rxd->attention.flags & __cpu_to_le32(RX_ATTENTION_FLAGS_LAST_MPDU)); if (is_first_ppdu) { /* New PPDU starts so clear out the old per-PPDU status. */ status->freq = 0; status->rate_idx = 0; status->vht_nss = 0; status->vht_flag &= ~RX_VHT_FLAG_80MHZ; status->flag &= ~(RX_FLAG_HT | RX_FLAG_VHT | RX_FLAG_SHORT_GI | RX_FLAG_40MHZ | RX_FLAG_MACTIME_END); status->flag |= RX_FLAG_NO_SIGNAL_VAL; ath10k_htt_rx_h_signal(ar, status, rxd); ath10k_htt_rx_h_channel(ar, status, rxd, vdev_id); ath10k_htt_rx_h_rates(ar, status, rxd); } if (is_last_ppdu) ath10k_htt_rx_h_mactime(ar, status, rxd); } static const char * const tid_to_ac[] = { "BE", "BK", "BK", "BE", "VI", "VI", "VO", "VO", }; static char *ath10k_get_tid(struct ieee80211_hdr *hdr, char *out, size_t size) { u8 *qc; int tid; if (!ieee80211_is_data_qos(hdr->frame_control)) return ""; qc = ieee80211_get_qos_ctl(hdr); tid = *qc & IEEE80211_QOS_CTL_TID_MASK; if (tid < 8) snprintf(out, size, "tid %d (%s)", tid, tid_to_ac[tid]); else snprintf(out, size, "tid %d", tid); return out; } static void ath10k_process_rx(struct ath10k *ar, struct ieee80211_rx_status *rx_status, struct sk_buff *skb) { struct ieee80211_rx_status *status; struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; char tid[32]; status = IEEE80211_SKB_RXCB(skb); *status = *rx_status; ath10k_dbg(ar, ATH10K_DBG_DATA, "rx skb %pK len %u peer %pM %s %s sn %u %s%s%s%s%s %srate_idx %u vht_nss %u freq %u band %u flag 0x%llx fcs-err %i mic-err %i amsdu-more %i\n", skb, skb->len, ieee80211_get_SA(hdr), ath10k_get_tid(hdr, tid, sizeof(tid)), is_multicast_ether_addr(ieee80211_get_DA(hdr)) ? "mcast" : "ucast", (__le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_SEQ) >> 4, (status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) == 0 ? "legacy" : "", status->flag & RX_FLAG_HT ? "ht" : "", status->flag & RX_FLAG_VHT ? "vht" : "", status->flag & RX_FLAG_40MHZ ? "40" : "", status->vht_flag & RX_VHT_FLAG_80MHZ ? "80" : "", status->flag & RX_FLAG_SHORT_GI ? "sgi " : "", status->rate_idx, status->vht_nss, status->freq, status->band, status->flag, !!(status->flag & RX_FLAG_FAILED_FCS_CRC), !!(status->flag & RX_FLAG_MMIC_ERROR), !!(status->flag & RX_FLAG_AMSDU_MORE)); ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "rx skb: ", skb->data, skb->len); trace_ath10k_rx_hdr(ar, skb->data, skb->len); trace_ath10k_rx_payload(ar, skb->data, skb->len); ieee80211_rx_napi(ar->hw, NULL, skb, &ar->napi); } static int ath10k_htt_rx_nwifi_hdrlen(struct ath10k *ar, struct ieee80211_hdr *hdr) { int len = ieee80211_hdrlen(hdr->frame_control); if (!test_bit(ATH10K_FW_FEATURE_NO_NWIFI_DECAP_4ADDR_PADDING, ar->running_fw->fw_file.fw_features)) len = round_up(len, 4); return len; } static void ath10k_htt_rx_h_undecap_raw(struct ath10k *ar, struct sk_buff *msdu, struct ieee80211_rx_status *status, enum htt_rx_mpdu_encrypt_type enctype, bool is_decrypted) { struct ieee80211_hdr *hdr; struct htt_rx_desc *rxd; size_t hdr_len; size_t crypto_len; bool is_first; bool is_last; rxd = (void *)msdu->data - sizeof(*rxd); is_first = !!(rxd->msdu_end.common.info0 & __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU)); is_last = !!(rxd->msdu_end.common.info0 & __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU)); /* Delivered decapped frame: * [802.11 header] * [crypto param] <-- can be trimmed if !fcs_err && * !decrypt_err && !peer_idx_invalid * [amsdu header] <-- only if A-MSDU * [rfc1042/llc] * [payload] * [FCS] <-- at end, needs to be trimmed */ /* This probably shouldn't happen but warn just in case */ if (unlikely(WARN_ON_ONCE(!is_first))) return; /* This probably shouldn't happen but warn just in case */ if (unlikely(WARN_ON_ONCE(!(is_first && is_last)))) return; skb_trim(msdu, msdu->len - FCS_LEN); /* In most cases this will be true for sniffed frames. It makes sense * to deliver them as-is without stripping the crypto param. This is * necessary for software based decryption. * * If there's no error then the frame is decrypted. At least that is * the case for frames that come in via fragmented rx indication. */ if (!is_decrypted) return; /* The payload is decrypted so strip crypto params. Start from tail * since hdr is used to compute some stuff. */ hdr = (void *)msdu->data; /* Tail */ if (status->flag & RX_FLAG_IV_STRIPPED) skb_trim(msdu, msdu->len - ath10k_htt_rx_crypto_tail_len(ar, enctype)); /* MMIC */ if ((status->flag & RX_FLAG_MMIC_STRIPPED) && !ieee80211_has_morefrags(hdr->frame_control) && enctype == HTT_RX_MPDU_ENCRYPT_TKIP_WPA) skb_trim(msdu, msdu->len - 8); /* Head */ if (status->flag & RX_FLAG_IV_STRIPPED) { hdr_len = ieee80211_hdrlen(hdr->frame_control); crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype); memmove((void *)msdu->data + crypto_len, (void *)msdu->data, hdr_len); skb_pull(msdu, crypto_len); } } static void ath10k_htt_rx_h_undecap_nwifi(struct ath10k *ar, struct sk_buff *msdu, struct ieee80211_rx_status *status, const u8 first_hdr[64]) { struct ieee80211_hdr *hdr; struct htt_rx_desc *rxd; size_t hdr_len; u8 da[ETH_ALEN]; u8 sa[ETH_ALEN]; int l3_pad_bytes; /* Delivered decapped frame: * [nwifi 802.11 header] <-- replaced with 802.11 hdr * [rfc1042/llc] * * Note: The nwifi header doesn't have QoS Control and is * (always?) a 3addr frame. * * Note2: There's no A-MSDU subframe header. Even if it's part * of an A-MSDU. */ /* pull decapped header and copy SA & DA */ rxd = (void *)msdu->data - sizeof(*rxd); l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd); skb_put(msdu, l3_pad_bytes); hdr = (struct ieee80211_hdr *)(msdu->data + l3_pad_bytes); hdr_len = ath10k_htt_rx_nwifi_hdrlen(ar, hdr); ether_addr_copy(da, ieee80211_get_DA(hdr)); ether_addr_copy(sa, ieee80211_get_SA(hdr)); skb_pull(msdu, hdr_len); /* push original 802.11 header */ hdr = (struct ieee80211_hdr *)first_hdr; hdr_len = ieee80211_hdrlen(hdr->frame_control); memcpy(skb_push(msdu, hdr_len), hdr, hdr_len); /* original 802.11 header has a different DA and in * case of 4addr it may also have different SA */ hdr = (struct ieee80211_hdr *)msdu->data; ether_addr_copy(ieee80211_get_DA(hdr), da); ether_addr_copy(ieee80211_get_SA(hdr), sa); } static void *ath10k_htt_rx_h_find_rfc1042(struct ath10k *ar, struct sk_buff *msdu, enum htt_rx_mpdu_encrypt_type enctype) { struct ieee80211_hdr *hdr; struct htt_rx_desc *rxd; size_t hdr_len, crypto_len; void *rfc1042; bool is_first, is_last, is_amsdu; int bytes_aligned = ar->hw_params.decap_align_bytes; rxd = (void *)msdu->data - sizeof(*rxd); hdr = (void *)rxd->rx_hdr_status; is_first = !!(rxd->msdu_end.common.info0 & __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU)); is_last = !!(rxd->msdu_end.common.info0 & __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU)); is_amsdu = !(is_first && is_last); rfc1042 = hdr; if (is_first) { hdr_len = ieee80211_hdrlen(hdr->frame_control); crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype); rfc1042 += round_up(hdr_len, bytes_aligned) + round_up(crypto_len, bytes_aligned); } if (is_amsdu) rfc1042 += sizeof(struct amsdu_subframe_hdr); return rfc1042; } static void ath10k_htt_rx_h_undecap_eth(struct ath10k *ar, struct sk_buff *msdu, struct ieee80211_rx_status *status, const u8 first_hdr[64], enum htt_rx_mpdu_encrypt_type enctype) { struct ieee80211_hdr *hdr; struct ethhdr *eth; size_t hdr_len; void *rfc1042; u8 da[ETH_ALEN]; u8 sa[ETH_ALEN]; int l3_pad_bytes; struct htt_rx_desc *rxd; /* Delivered decapped frame: * [eth header] <-- replaced with 802.11 hdr & rfc1042/llc * [payload] */ rfc1042 = ath10k_htt_rx_h_find_rfc1042(ar, msdu, enctype); if (WARN_ON_ONCE(!rfc1042)) return; rxd = (void *)msdu->data - sizeof(*rxd); l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd); skb_put(msdu, l3_pad_bytes); skb_pull(msdu, l3_pad_bytes); /* pull decapped header and copy SA & DA */ eth = (struct ethhdr *)msdu->data; ether_addr_copy(da, eth->h_dest); ether_addr_copy(sa, eth->h_source); skb_pull(msdu, sizeof(struct ethhdr)); /* push rfc1042/llc/snap */ memcpy(skb_push(msdu, sizeof(struct rfc1042_hdr)), rfc1042, sizeof(struct rfc1042_hdr)); /* push original 802.11 header */ hdr = (struct ieee80211_hdr *)first_hdr; hdr_len = ieee80211_hdrlen(hdr->frame_control); memcpy(skb_push(msdu, hdr_len), hdr, hdr_len); /* original 802.11 header has a different DA and in * case of 4addr it may also have different SA */ hdr = (struct ieee80211_hdr *)msdu->data; ether_addr_copy(ieee80211_get_DA(hdr), da); ether_addr_copy(ieee80211_get_SA(hdr), sa); } static void ath10k_htt_rx_h_undecap_snap(struct ath10k *ar, struct sk_buff *msdu, struct ieee80211_rx_status *status, const u8 first_hdr[64]) { struct ieee80211_hdr *hdr; size_t hdr_len; int l3_pad_bytes; struct htt_rx_desc *rxd; /* Delivered decapped frame: * [amsdu header] <-- replaced with 802.11 hdr * [rfc1042/llc] * [payload] */ rxd = (void *)msdu->data - sizeof(*rxd); l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd); skb_put(msdu, l3_pad_bytes); skb_pull(msdu, sizeof(struct amsdu_subframe_hdr) + l3_pad_bytes); hdr = (struct ieee80211_hdr *)first_hdr; hdr_len = ieee80211_hdrlen(hdr->frame_control); memcpy(skb_push(msdu, hdr_len), hdr, hdr_len); } static void ath10k_htt_rx_h_undecap(struct ath10k *ar, struct sk_buff *msdu, struct ieee80211_rx_status *status, u8 first_hdr[64], enum htt_rx_mpdu_encrypt_type enctype, bool is_decrypted) { struct htt_rx_desc *rxd; enum rx_msdu_decap_format decap; /* First msdu's decapped header: * [802.11 header] <-- padded to 4 bytes long * [crypto param] <-- padded to 4 bytes long * [amsdu header] <-- only if A-MSDU * [rfc1042/llc] * * Other (2nd, 3rd, ..) msdu's decapped header: * [amsdu header] <-- only if A-MSDU * [rfc1042/llc] */ rxd = (void *)msdu->data - sizeof(*rxd); decap = MS(__le32_to_cpu(rxd->msdu_start.common.info1), RX_MSDU_START_INFO1_DECAP_FORMAT); switch (decap) { case RX_MSDU_DECAP_RAW: ath10k_htt_rx_h_undecap_raw(ar, msdu, status, enctype, is_decrypted); break; case RX_MSDU_DECAP_NATIVE_WIFI: ath10k_htt_rx_h_undecap_nwifi(ar, msdu, status, first_hdr); break; case RX_MSDU_DECAP_ETHERNET2_DIX: ath10k_htt_rx_h_undecap_eth(ar, msdu, status, first_hdr, enctype); break; case RX_MSDU_DECAP_8023_SNAP_LLC: ath10k_htt_rx_h_undecap_snap(ar, msdu, status, first_hdr); break; } } static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb) { struct htt_rx_desc *rxd; u32 flags, info; bool is_ip4, is_ip6; bool is_tcp, is_udp; bool ip_csum_ok, tcpudp_csum_ok; rxd = (void *)skb->data - sizeof(*rxd); flags = __le32_to_cpu(rxd->attention.flags); info = __le32_to_cpu(rxd->msdu_start.common.info1); is_ip4 = !!(info & RX_MSDU_START_INFO1_IPV4_PROTO); is_ip6 = !!(info & RX_MSDU_START_INFO1_IPV6_PROTO); is_tcp = !!(info & RX_MSDU_START_INFO1_TCP_PROTO); is_udp = !!(info & RX_MSDU_START_INFO1_UDP_PROTO); ip_csum_ok = !(flags & RX_ATTENTION_FLAGS_IP_CHKSUM_FAIL); tcpudp_csum_ok = !(flags & RX_ATTENTION_FLAGS_TCP_UDP_CHKSUM_FAIL); if (!is_ip4 && !is_ip6) return CHECKSUM_NONE; if (!is_tcp && !is_udp) return CHECKSUM_NONE; if (!ip_csum_ok) return CHECKSUM_NONE; if (!tcpudp_csum_ok) return CHECKSUM_NONE; return CHECKSUM_UNNECESSARY; } static void ath10k_htt_rx_h_csum_offload(struct sk_buff *msdu) { msdu->ip_summed = ath10k_htt_rx_get_csum_state(msdu); } static void ath10k_htt_rx_h_mpdu(struct ath10k *ar, struct sk_buff_head *amsdu, struct ieee80211_rx_status *status) { struct sk_buff *first; struct sk_buff *last; struct sk_buff *msdu; struct htt_rx_desc *rxd; struct ieee80211_hdr *hdr; enum htt_rx_mpdu_encrypt_type enctype; u8 first_hdr[64]; u8 *qos; size_t hdr_len; bool has_fcs_err; bool has_crypto_err; bool has_tkip_err; bool has_peer_idx_invalid; bool is_decrypted; bool is_mgmt; u32 attention; if (skb_queue_empty(amsdu)) return; first = skb_peek(amsdu); rxd = (void *)first->data - sizeof(*rxd); is_mgmt = !!(rxd->attention.flags & __cpu_to_le32(RX_ATTENTION_FLAGS_MGMT_TYPE)); enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0), RX_MPDU_START_INFO0_ENCRYPT_TYPE); /* First MSDU's Rx descriptor in an A-MSDU contains full 802.11 * decapped header. It'll be used for undecapping of each MSDU. */ hdr = (void *)rxd->rx_hdr_status; hdr_len = ieee80211_hdrlen(hdr->frame_control); memcpy(first_hdr, hdr, hdr_len); /* Each A-MSDU subframe will use the original header as the base and be * reported as a separate MSDU so strip the A-MSDU bit from QoS Ctl. */ hdr = (void *)first_hdr; qos = ieee80211_get_qos_ctl(hdr); qos[0] &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT; /* Some attention flags are valid only in the last MSDU. */ last = skb_peek_tail(amsdu); rxd = (void *)last->data - sizeof(*rxd); attention = __le32_to_cpu(rxd->attention.flags); has_fcs_err = !!(attention & RX_ATTENTION_FLAGS_FCS_ERR); has_crypto_err = !!(attention & RX_ATTENTION_FLAGS_DECRYPT_ERR); has_tkip_err = !!(attention & RX_ATTENTION_FLAGS_TKIP_MIC_ERR); has_peer_idx_invalid = !!(attention & RX_ATTENTION_FLAGS_PEER_IDX_INVALID); /* Note: If hardware captures an encrypted frame that it can't decrypt, * e.g. due to fcs error, missing peer or invalid key data it will * report the frame as raw. */ is_decrypted = (enctype != HTT_RX_MPDU_ENCRYPT_NONE && !has_fcs_err && !has_crypto_err && !has_peer_idx_invalid); /* Clear per-MPDU flags while leaving per-PPDU flags intact. */ status->flag &= ~(RX_FLAG_FAILED_FCS_CRC | RX_FLAG_MMIC_ERROR | RX_FLAG_DECRYPTED | RX_FLAG_IV_STRIPPED | RX_FLAG_ONLY_MONITOR | RX_FLAG_MMIC_STRIPPED); if (has_fcs_err) status->flag |= RX_FLAG_FAILED_FCS_CRC; if (has_tkip_err) status->flag |= RX_FLAG_MMIC_ERROR; /* Firmware reports all necessary management frames via WMI already. * They are not reported to monitor interfaces at all so pass the ones * coming via HTT to monitor interfaces instead. This simplifies * matters a lot. */ if (is_mgmt) status->flag |= RX_FLAG_ONLY_MONITOR; if (is_decrypted) { status->flag |= RX_FLAG_DECRYPTED; if (likely(!is_mgmt)) status->flag |= RX_FLAG_IV_STRIPPED | RX_FLAG_MMIC_STRIPPED; } skb_queue_walk(amsdu, msdu) { ath10k_htt_rx_h_csum_offload(msdu); ath10k_htt_rx_h_undecap(ar, msdu, status, first_hdr, enctype, is_decrypted); /* Undecapping involves copying the original 802.11 header back * to sk_buff. If frame is protected and hardware has decrypted * it then remove the protected bit. */ if (!is_decrypted) continue; if (is_mgmt) continue; hdr = (void *)msdu->data; hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED); } } static void ath10k_htt_rx_h_deliver(struct ath10k *ar, struct sk_buff_head *amsdu, struct ieee80211_rx_status *status) { struct sk_buff *msdu; while ((msdu = __skb_dequeue(amsdu))) { /* Setup per-MSDU flags */ if (skb_queue_empty(amsdu)) status->flag &= ~RX_FLAG_AMSDU_MORE; else status->flag |= RX_FLAG_AMSDU_MORE; ath10k_process_rx(ar, status, msdu); } } static int ath10k_unchain_msdu(struct sk_buff_head *amsdu) { struct sk_buff *skb, *first; int space; int total_len = 0; /* TODO: Might could optimize this by using * skb_try_coalesce or similar method to * decrease copying, or maybe get mac80211 to * provide a way to just receive a list of * skb? */ first = __skb_dequeue(amsdu); /* Allocate total length all at once. */ skb_queue_walk(amsdu, skb) total_len += skb->len; space = total_len - skb_tailroom(first); if ((space > 0) && (pskb_expand_head(first, 0, space, GFP_ATOMIC) < 0)) { /* TODO: bump some rx-oom error stat */ /* put it back together so we can free the * whole list at once. */ __skb_queue_head(amsdu, first); return -1; } /* Walk list again, copying contents into * msdu_head */ while ((skb = __skb_dequeue(amsdu))) { skb_copy_from_linear_data(skb, skb_put(first, skb->len), skb->len); dev_kfree_skb_any(skb); } __skb_queue_head(amsdu, first); return 0; } static void ath10k_htt_rx_h_unchain(struct ath10k *ar, struct sk_buff_head *amsdu) { struct sk_buff *first; struct htt_rx_desc *rxd; enum rx_msdu_decap_format decap; first = skb_peek(amsdu); rxd = (void *)first->data - sizeof(*rxd); decap = MS(__le32_to_cpu(rxd->msdu_start.common.info1), RX_MSDU_START_INFO1_DECAP_FORMAT); /* FIXME: Current unchaining logic can only handle simple case of raw * msdu chaining. If decapping is other than raw the chaining may be * more complex and this isn't handled by the current code. Don't even * try re-constructing such frames - it'll be pretty much garbage. */ if (decap != RX_MSDU_DECAP_RAW || skb_queue_len(amsdu) != 1 + rxd->frag_info.ring2_more_count) { __skb_queue_purge(amsdu); return; } ath10k_unchain_msdu(amsdu); } static bool ath10k_htt_rx_amsdu_allowed(struct ath10k *ar, struct sk_buff_head *amsdu, struct ieee80211_rx_status *rx_status) { /* FIXME: It might be a good idea to do some fuzzy-testing to drop * invalid/dangerous frames. */ if (!rx_status->freq) { ath10k_warn(ar, "no channel configured; ignoring frame(s)!\n"); return false; } if (test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags)) { ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx cac running\n"); return false; } return true; } static void ath10k_htt_rx_h_filter(struct ath10k *ar, struct sk_buff_head *amsdu, struct ieee80211_rx_status *rx_status) { if (skb_queue_empty(amsdu)) return; if (ath10k_htt_rx_amsdu_allowed(ar, amsdu, rx_status)) return; __skb_queue_purge(amsdu); } static int ath10k_htt_rx_handle_amsdu(struct ath10k_htt *htt) { struct ath10k *ar = htt->ar; struct ieee80211_rx_status *rx_status = &htt->rx_status; struct sk_buff_head amsdu; int ret, num_msdus; __skb_queue_head_init(&amsdu); spin_lock_bh(&htt->rx_ring.lock); if (htt->rx_confused) { spin_unlock_bh(&htt->rx_ring.lock); return -EIO; } ret = ath10k_htt_rx_amsdu_pop(htt, &amsdu); spin_unlock_bh(&htt->rx_ring.lock); if (ret < 0) { ath10k_warn(ar, "rx ring became corrupted: %d\n", ret); __skb_queue_purge(&amsdu); /* FIXME: It's probably a good idea to reboot the * device instead of leaving it inoperable. */ htt->rx_confused = true; return ret; } num_msdus = skb_queue_len(&amsdu); ath10k_htt_rx_h_ppdu(ar, &amsdu, rx_status, 0xffff); /* only for ret = 1 indicates chained msdus */ if (ret > 0) ath10k_htt_rx_h_unchain(ar, &amsdu); ath10k_htt_rx_h_filter(ar, &amsdu, rx_status); ath10k_htt_rx_h_mpdu(ar, &amsdu, rx_status); ath10k_htt_rx_h_deliver(ar, &amsdu, rx_status); return num_msdus; } static void ath10k_htt_rx_proc_rx_ind(struct ath10k_htt *htt, struct htt_rx_indication *rx) { struct ath10k *ar = htt->ar; struct htt_rx_indication_mpdu_range *mpdu_ranges; int num_mpdu_ranges; int i, mpdu_count = 0; num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1), HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES); mpdu_ranges = htt_rx_ind_get_mpdu_ranges(rx); ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx ind: ", rx, sizeof(*rx) + (sizeof(struct htt_rx_indication_mpdu_range) * num_mpdu_ranges)); for (i = 0; i < num_mpdu_ranges; i++) mpdu_count += mpdu_ranges[i].mpdu_count; atomic_add(mpdu_count, &htt->num_mpdus_ready); } static void ath10k_htt_rx_tx_compl_ind(struct ath10k *ar, struct sk_buff *skb) { struct ath10k_htt *htt = &ar->htt; struct htt_resp *resp = (struct htt_resp *)skb->data; struct htt_tx_done tx_done = {}; int status = MS(resp->data_tx_completion.flags, HTT_DATA_TX_STATUS); __le16 msdu_id; int i; switch (status) { case HTT_DATA_TX_STATUS_NO_ACK: tx_done.status = HTT_TX_COMPL_STATE_NOACK; break; case HTT_DATA_TX_STATUS_OK: tx_done.status = HTT_TX_COMPL_STATE_ACK; break; case HTT_DATA_TX_STATUS_DISCARD: case HTT_DATA_TX_STATUS_POSTPONE: case HTT_DATA_TX_STATUS_DOWNLOAD_FAIL: tx_done.status = HTT_TX_COMPL_STATE_DISCARD; break; default: ath10k_warn(ar, "unhandled tx completion status %d\n", status); tx_done.status = HTT_TX_COMPL_STATE_DISCARD; break; } ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx completion num_msdus %d\n", resp->data_tx_completion.num_msdus); for (i = 0; i < resp->data_tx_completion.num_msdus; i++) { msdu_id = resp->data_tx_completion.msdus[i]; tx_done.msdu_id = __le16_to_cpu(msdu_id); /* kfifo_put: In practice firmware shouldn't fire off per-CE * interrupt and main interrupt (MSI/-X range case) for the same * HTC service so it should be safe to use kfifo_put w/o lock. * * From kfifo_put() documentation: * Note that with only one concurrent reader and one concurrent * writer, you don't need extra locking to use these macro. */ if (!kfifo_put(&htt->txdone_fifo, tx_done)) { ath10k_warn(ar, "txdone fifo overrun, msdu_id %d status %d\n", tx_done.msdu_id, tx_done.status); ath10k_txrx_tx_unref(htt, &tx_done); } } } static void ath10k_htt_rx_addba(struct ath10k *ar, struct htt_resp *resp) { struct htt_rx_addba *ev = &resp->rx_addba; struct ath10k_peer *peer; struct ath10k_vif *arvif; u16 info0, tid, peer_id; info0 = __le16_to_cpu(ev->info0); tid = MS(info0, HTT_RX_BA_INFO0_TID); peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID); ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx addba tid %hu peer_id %hu size %hhu\n", tid, peer_id, ev->window_size); spin_lock_bh(&ar->data_lock); peer = ath10k_peer_find_by_id(ar, peer_id); if (!peer) { ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n", peer_id); spin_unlock_bh(&ar->data_lock); return; } arvif = ath10k_get_arvif(ar, peer->vdev_id); if (!arvif) { ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n", peer->vdev_id); spin_unlock_bh(&ar->data_lock); return; } ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx start rx ba session sta %pM tid %hu size %hhu\n", peer->addr, tid, ev->window_size); ieee80211_start_rx_ba_session_offl(arvif->vif, peer->addr, tid); spin_unlock_bh(&ar->data_lock); } static void ath10k_htt_rx_delba(struct ath10k *ar, struct htt_resp *resp) { struct htt_rx_delba *ev = &resp->rx_delba; struct ath10k_peer *peer; struct ath10k_vif *arvif; u16 info0, tid, peer_id; info0 = __le16_to_cpu(ev->info0); tid = MS(info0, HTT_RX_BA_INFO0_TID); peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID); ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx delba tid %hu peer_id %hu\n", tid, peer_id); spin_lock_bh(&ar->data_lock); peer = ath10k_peer_find_by_id(ar, peer_id); if (!peer) { ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n", peer_id); spin_unlock_bh(&ar->data_lock); return; } arvif = ath10k_get_arvif(ar, peer->vdev_id); if (!arvif) { ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n", peer->vdev_id); spin_unlock_bh(&ar->data_lock); return; } ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx stop rx ba session sta %pM tid %hu\n", peer->addr, tid); ieee80211_stop_rx_ba_session_offl(arvif->vif, peer->addr, tid); spin_unlock_bh(&ar->data_lock); } static int ath10k_htt_rx_extract_amsdu(struct sk_buff_head *list, struct sk_buff_head *amsdu) { struct sk_buff *msdu; struct htt_rx_desc *rxd; if (skb_queue_empty(list)) return -ENOBUFS; if (WARN_ON(!skb_queue_empty(amsdu))) return -EINVAL; while ((msdu = __skb_dequeue(list))) { __skb_queue_tail(amsdu, msdu); rxd = (void *)msdu->data - sizeof(*rxd); if (rxd->msdu_end.common.info0 & __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU)) break; } msdu = skb_peek_tail(amsdu); rxd = (void *)msdu->data - sizeof(*rxd); if (!(rxd->msdu_end.common.info0 & __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU))) { skb_queue_splice_init(amsdu, list); return -EAGAIN; } return 0; } static void ath10k_htt_rx_h_rx_offload_prot(struct ieee80211_rx_status *status, struct sk_buff *skb) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; if (!ieee80211_has_protected(hdr->frame_control)) return; /* Offloaded frames are already decrypted but firmware insists they are * protected in the 802.11 header. Strip the flag. Otherwise mac80211 * will drop the frame. */ hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED); status->flag |= RX_FLAG_DECRYPTED | RX_FLAG_IV_STRIPPED | RX_FLAG_MMIC_STRIPPED; } static int ath10k_htt_rx_h_rx_offload(struct ath10k *ar, struct sk_buff_head *list) { struct ath10k_htt *htt = &ar->htt; struct ieee80211_rx_status *status = &htt->rx_status; struct htt_rx_offload_msdu *rx; struct sk_buff *msdu; size_t offset; int num_msdu = 0; while ((msdu = __skb_dequeue(list))) { /* Offloaded frames don't have Rx descriptor. Instead they have * a short meta information header. */ rx = (void *)msdu->data; skb_put(msdu, sizeof(*rx)); skb_pull(msdu, sizeof(*rx)); if (skb_tailroom(msdu) < __le16_to_cpu(rx->msdu_len)) { ath10k_warn(ar, "dropping frame: offloaded rx msdu is too long!\n"); dev_kfree_skb_any(msdu); continue; } skb_put(msdu, __le16_to_cpu(rx->msdu_len)); /* Offloaded rx header length isn't multiple of 2 nor 4 so the * actual payload is unaligned. Align the frame. Otherwise * mac80211 complains. This shouldn't reduce performance much * because these offloaded frames are rare. */ offset = 4 - ((unsigned long)msdu->data & 3); skb_put(msdu, offset); memmove(msdu->data + offset, msdu->data, msdu->len); skb_pull(msdu, offset); /* FIXME: The frame is NWifi. Re-construct QoS Control * if possible later. */ memset(status, 0, sizeof(*status)); status->flag |= RX_FLAG_NO_SIGNAL_VAL; ath10k_htt_rx_h_rx_offload_prot(status, msdu); ath10k_htt_rx_h_channel(ar, status, NULL, rx->vdev_id); ath10k_process_rx(ar, status, msdu); num_msdu++; } return num_msdu; } static int ath10k_htt_rx_in_ord_ind(struct ath10k *ar, struct sk_buff *skb) { struct ath10k_htt *htt = &ar->htt; struct htt_resp *resp = (void *)skb->data; struct ieee80211_rx_status *status = &htt->rx_status; struct sk_buff_head list; struct sk_buff_head amsdu; u16 peer_id; u16 msdu_count; u8 vdev_id; u8 tid; bool offload; bool frag; int ret, num_msdus = 0; lockdep_assert_held(&htt->rx_ring.lock); if (htt->rx_confused) return -EIO; skb_pull(skb, sizeof(resp->hdr)); skb_pull(skb, sizeof(resp->rx_in_ord_ind)); peer_id = __le16_to_cpu(resp->rx_in_ord_ind.peer_id); msdu_count = __le16_to_cpu(resp->rx_in_ord_ind.msdu_count); vdev_id = resp->rx_in_ord_ind.vdev_id; tid = SM(resp->rx_in_ord_ind.info, HTT_RX_IN_ORD_IND_INFO_TID); offload = !!(resp->rx_in_ord_ind.info & HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK); frag = !!(resp->rx_in_ord_ind.info & HTT_RX_IN_ORD_IND_INFO_FRAG_MASK); ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx in ord vdev %i peer %i tid %i offload %i frag %i msdu count %i\n", vdev_id, peer_id, tid, offload, frag, msdu_count); if (skb->len < msdu_count * sizeof(*resp->rx_in_ord_ind.msdu_descs)) { ath10k_warn(ar, "dropping invalid in order rx indication\n"); return -EINVAL; } /* The event can deliver more than 1 A-MSDU. Each A-MSDU is later * extracted and processed. */ __skb_queue_head_init(&list); ret = ath10k_htt_rx_pop_paddr_list(htt, &resp->rx_in_ord_ind, &list); if (ret < 0) { ath10k_warn(ar, "failed to pop paddr list: %d\n", ret); htt->rx_confused = true; return -EIO; } /* Offloaded frames are very different and need to be handled * separately. */ if (offload) num_msdus = ath10k_htt_rx_h_rx_offload(ar, &list); while (!skb_queue_empty(&list)) { __skb_queue_head_init(&amsdu); ret = ath10k_htt_rx_extract_amsdu(&list, &amsdu); switch (ret) { case 0: /* Note: The in-order indication may report interleaved * frames from different PPDUs meaning reported rx rate * to mac80211 isn't accurate/reliable. It's still * better to report something than nothing though. This * should still give an idea about rx rate to the user. */ num_msdus += skb_queue_len(&amsdu); ath10k_htt_rx_h_ppdu(ar, &amsdu, status, vdev_id); ath10k_htt_rx_h_filter(ar, &amsdu, status); ath10k_htt_rx_h_mpdu(ar, &amsdu, status); ath10k_htt_rx_h_deliver(ar, &amsdu, status); break; case -EAGAIN: /* fall through */ default: /* Should not happen. */ ath10k_warn(ar, "failed to extract amsdu: %d\n", ret); htt->rx_confused = true; __skb_queue_purge(&list); return -EIO; } } return num_msdus; } static void ath10k_htt_rx_tx_fetch_resp_id_confirm(struct ath10k *ar, const __le32 *resp_ids, int num_resp_ids) { int i; u32 resp_id; ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm num_resp_ids %d\n", num_resp_ids); for (i = 0; i < num_resp_ids; i++) { resp_id = le32_to_cpu(resp_ids[i]); ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm resp_id %u\n", resp_id); /* TODO: free resp_id */ } } static void ath10k_htt_rx_tx_fetch_ind(struct ath10k *ar, struct sk_buff *skb) { struct ieee80211_hw *hw = ar->hw; struct ieee80211_txq *txq; struct htt_resp *resp = (struct htt_resp *)skb->data; struct htt_tx_fetch_record *record; size_t len; size_t max_num_bytes; size_t max_num_msdus; size_t num_bytes; size_t num_msdus; const __le32 *resp_ids; u16 num_records; u16 num_resp_ids; u16 peer_id; u8 tid; int ret; int i; ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch ind\n"); len = sizeof(resp->hdr) + sizeof(resp->tx_fetch_ind); if (unlikely(skb->len < len)) { ath10k_warn(ar, "received corrupted tx_fetch_ind event: buffer too short\n"); return; } num_records = le16_to_cpu(resp->tx_fetch_ind.num_records); num_resp_ids = le16_to_cpu(resp->tx_fetch_ind.num_resp_ids); len += sizeof(resp->tx_fetch_ind.records[0]) * num_records; len += sizeof(resp->tx_fetch_ind.resp_ids[0]) * num_resp_ids; if (unlikely(skb->len < len)) { ath10k_warn(ar, "received corrupted tx_fetch_ind event: too many records/resp_ids\n"); return; } ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch ind num records %hu num resps %hu seq %hu\n", num_records, num_resp_ids, le16_to_cpu(resp->tx_fetch_ind.fetch_seq_num)); if (!ar->htt.tx_q_state.enabled) { ath10k_warn(ar, "received unexpected tx_fetch_ind event: not enabled\n"); return; } if (ar->htt.tx_q_state.mode == HTT_TX_MODE_SWITCH_PUSH) { ath10k_warn(ar, "received unexpected tx_fetch_ind event: in push mode\n"); return; } rcu_read_lock(); for (i = 0; i < num_records; i++) { record = &resp->tx_fetch_ind.records[i]; peer_id = MS(le16_to_cpu(record->info), HTT_TX_FETCH_RECORD_INFO_PEER_ID); tid = MS(le16_to_cpu(record->info), HTT_TX_FETCH_RECORD_INFO_TID); max_num_msdus = le16_to_cpu(record->num_msdus); max_num_bytes = le32_to_cpu(record->num_bytes); ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch record %i peer_id %hu tid %hhu msdus %zu bytes %zu\n", i, peer_id, tid, max_num_msdus, max_num_bytes); if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) || unlikely(tid >= ar->htt.tx_q_state.num_tids)) { ath10k_warn(ar, "received out of range peer_id %hu tid %hhu\n", peer_id, tid); continue; } spin_lock_bh(&ar->data_lock); txq = ath10k_mac_txq_lookup(ar, peer_id, tid); spin_unlock_bh(&ar->data_lock); /* It is okay to release the lock and use txq because RCU read * lock is held. */ if (unlikely(!txq)) { ath10k_warn(ar, "failed to lookup txq for peer_id %hu tid %hhu\n", peer_id, tid); continue; } num_msdus = 0; num_bytes = 0; while (num_msdus < max_num_msdus && num_bytes < max_num_bytes) { ret = ath10k_mac_tx_push_txq(hw, txq); if (ret < 0) break; num_msdus++; num_bytes += ret; } record->num_msdus = cpu_to_le16(num_msdus); record->num_bytes = cpu_to_le32(num_bytes); ath10k_htt_tx_txq_recalc(hw, txq); } rcu_read_unlock(); resp_ids = ath10k_htt_get_tx_fetch_ind_resp_ids(&resp->tx_fetch_ind); ath10k_htt_rx_tx_fetch_resp_id_confirm(ar, resp_ids, num_resp_ids); ret = ath10k_htt_tx_fetch_resp(ar, resp->tx_fetch_ind.token, resp->tx_fetch_ind.fetch_seq_num, resp->tx_fetch_ind.records, num_records); if (unlikely(ret)) { ath10k_warn(ar, "failed to submit tx fetch resp for token 0x%08x: %d\n", le32_to_cpu(resp->tx_fetch_ind.token), ret); /* FIXME: request fw restart */ } ath10k_htt_tx_txq_sync(ar); } static void ath10k_htt_rx_tx_fetch_confirm(struct ath10k *ar, struct sk_buff *skb) { const struct htt_resp *resp = (void *)skb->data; size_t len; int num_resp_ids; ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm\n"); len = sizeof(resp->hdr) + sizeof(resp->tx_fetch_confirm); if (unlikely(skb->len < len)) { ath10k_warn(ar, "received corrupted tx_fetch_confirm event: buffer too short\n"); return; } num_resp_ids = le16_to_cpu(resp->tx_fetch_confirm.num_resp_ids); len += sizeof(resp->tx_fetch_confirm.resp_ids[0]) * num_resp_ids; if (unlikely(skb->len < len)) { ath10k_warn(ar, "received corrupted tx_fetch_confirm event: resp_ids buffer overflow\n"); return; } ath10k_htt_rx_tx_fetch_resp_id_confirm(ar, resp->tx_fetch_confirm.resp_ids, num_resp_ids); } static void ath10k_htt_rx_tx_mode_switch_ind(struct ath10k *ar, struct sk_buff *skb) { const struct htt_resp *resp = (void *)skb->data; const struct htt_tx_mode_switch_record *record; struct ieee80211_txq *txq; struct ath10k_txq *artxq; size_t len; size_t num_records; enum htt_tx_mode_switch_mode mode; bool enable; u16 info0; u16 info1; u16 threshold; u16 peer_id; u8 tid; int i; ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx mode switch ind\n"); len = sizeof(resp->hdr) + sizeof(resp->tx_mode_switch_ind); if (unlikely(skb->len < len)) { ath10k_warn(ar, "received corrupted tx_mode_switch_ind event: buffer too short\n"); return; } info0 = le16_to_cpu(resp->tx_mode_switch_ind.info0); info1 = le16_to_cpu(resp->tx_mode_switch_ind.info1); enable = !!(info0 & HTT_TX_MODE_SWITCH_IND_INFO0_ENABLE); num_records = MS(info0, HTT_TX_MODE_SWITCH_IND_INFO1_THRESHOLD); mode = MS(info1, HTT_TX_MODE_SWITCH_IND_INFO1_MODE); threshold = MS(info1, HTT_TX_MODE_SWITCH_IND_INFO1_THRESHOLD); ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx mode switch ind info0 0x%04hx info1 0x%04hx enable %d num records %zd mode %d threshold %hu\n", info0, info1, enable, num_records, mode, threshold); len += sizeof(resp->tx_mode_switch_ind.records[0]) * num_records; if (unlikely(skb->len < len)) { ath10k_warn(ar, "received corrupted tx_mode_switch_mode_ind event: too many records\n"); return; } switch (mode) { case HTT_TX_MODE_SWITCH_PUSH: case HTT_TX_MODE_SWITCH_PUSH_PULL: break; default: ath10k_warn(ar, "received invalid tx_mode_switch_mode_ind mode %d, ignoring\n", mode); return; } if (!enable) return; ar->htt.tx_q_state.enabled = enable; ar->htt.tx_q_state.mode = mode; ar->htt.tx_q_state.num_push_allowed = threshold; rcu_read_lock(); for (i = 0; i < num_records; i++) { record = &resp->tx_mode_switch_ind.records[i]; info0 = le16_to_cpu(record->info0); peer_id = MS(info0, HTT_TX_MODE_SWITCH_RECORD_INFO0_PEER_ID); tid = MS(info0, HTT_TX_MODE_SWITCH_RECORD_INFO0_TID); if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) || unlikely(tid >= ar->htt.tx_q_state.num_tids)) { ath10k_warn(ar, "received out of range peer_id %hu tid %hhu\n", peer_id, tid); continue; } spin_lock_bh(&ar->data_lock); txq = ath10k_mac_txq_lookup(ar, peer_id, tid); spin_unlock_bh(&ar->data_lock); /* It is okay to release the lock and use txq because RCU read * lock is held. */ if (unlikely(!txq)) { ath10k_warn(ar, "failed to lookup txq for peer_id %hu tid %hhu\n", peer_id, tid); continue; } spin_lock_bh(&ar->htt.tx_lock); artxq = (void *)txq->drv_priv; artxq->num_push_allowed = le16_to_cpu(record->num_max_msdus); spin_unlock_bh(&ar->htt.tx_lock); } rcu_read_unlock(); ath10k_mac_tx_push_pending(ar); } void ath10k_htt_htc_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb) { bool release; release = ath10k_htt_t2h_msg_handler(ar, skb); /* Free the indication buffer */ if (release) dev_kfree_skb_any(skb); } static inline bool is_valid_legacy_rate(u8 rate) { static const u8 legacy_rates[] = {1, 2, 5, 11, 6, 9, 12, 18, 24, 36, 48, 54}; int i; for (i = 0; i < ARRAY_SIZE(legacy_rates); i++) { if (rate == legacy_rates[i]) return true; } return false; } static void ath10k_update_per_peer_tx_stats(struct ath10k *ar, struct ieee80211_sta *sta, struct ath10k_per_peer_tx_stats *peer_stats) { struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv; u8 rate = 0, sgi; struct rate_info txrate; lockdep_assert_held(&ar->data_lock); txrate.flags = ATH10K_HW_PREAMBLE(peer_stats->ratecode); txrate.bw = ATH10K_HW_BW(peer_stats->flags); txrate.nss = ATH10K_HW_NSS(peer_stats->ratecode); txrate.mcs = ATH10K_HW_MCS_RATE(peer_stats->ratecode); sgi = ATH10K_HW_GI(peer_stats->flags); if (((txrate.flags == WMI_RATE_PREAMBLE_HT) || (txrate.flags == WMI_RATE_PREAMBLE_VHT)) && txrate.mcs > 9) { ath10k_warn(ar, "Invalid mcs %hhd peer stats", txrate.mcs); return; } if (txrate.flags == WMI_RATE_PREAMBLE_CCK || txrate.flags == WMI_RATE_PREAMBLE_OFDM) { rate = ATH10K_HW_LEGACY_RATE(peer_stats->ratecode); if (!is_valid_legacy_rate(rate)) { ath10k_warn(ar, "Invalid legacy rate %hhd peer stats", rate); return; } /* This is hacky, FW sends CCK rate 5.5Mbps as 6 */ rate *= 10; if (rate == 60 && txrate.flags == WMI_RATE_PREAMBLE_CCK) rate = rate - 5; arsta->txrate.legacy = rate * 10; } else if (txrate.flags == WMI_RATE_PREAMBLE_HT) { arsta->txrate.flags = RATE_INFO_FLAGS_MCS; arsta->txrate.mcs = txrate.mcs; } else { arsta->txrate.flags = RATE_INFO_FLAGS_VHT_MCS; arsta->txrate.mcs = txrate.mcs; } if (sgi) arsta->txrate.flags |= RATE_INFO_FLAGS_SHORT_GI; arsta->txrate.nss = txrate.nss; arsta->txrate.bw = txrate.bw + RATE_INFO_BW_20; } static void ath10k_htt_fetch_peer_stats(struct ath10k *ar, struct sk_buff *skb) { struct htt_resp *resp = (struct htt_resp *)skb->data; struct ath10k_per_peer_tx_stats *p_tx_stats = &ar->peer_tx_stats; struct htt_per_peer_tx_stats_ind *tx_stats; struct ieee80211_sta *sta; struct ath10k_peer *peer; int peer_id, i; u8 ppdu_len, num_ppdu; num_ppdu = resp->peer_tx_stats.num_ppdu; ppdu_len = resp->peer_tx_stats.ppdu_len * sizeof(__le32); if (skb->len < sizeof(struct htt_resp_hdr) + num_ppdu * ppdu_len) { ath10k_warn(ar, "Invalid peer stats buf length %d\n", skb->len); return; } tx_stats = (struct htt_per_peer_tx_stats_ind *) (resp->peer_tx_stats.payload); peer_id = __le16_to_cpu(tx_stats->peer_id); rcu_read_lock(); spin_lock_bh(&ar->data_lock); peer = ath10k_peer_find_by_id(ar, peer_id); if (!peer) { ath10k_warn(ar, "Invalid peer id %d peer stats buffer\n", peer_id); goto out; } sta = peer->sta; for (i = 0; i < num_ppdu; i++) { tx_stats = (struct htt_per_peer_tx_stats_ind *) (resp->peer_tx_stats.payload + i * ppdu_len); p_tx_stats->succ_bytes = __le32_to_cpu(tx_stats->succ_bytes); p_tx_stats->retry_bytes = __le32_to_cpu(tx_stats->retry_bytes); p_tx_stats->failed_bytes = __le32_to_cpu(tx_stats->failed_bytes); p_tx_stats->ratecode = tx_stats->ratecode; p_tx_stats->flags = tx_stats->flags; p_tx_stats->succ_pkts = __le16_to_cpu(tx_stats->succ_pkts); p_tx_stats->retry_pkts = __le16_to_cpu(tx_stats->retry_pkts); p_tx_stats->failed_pkts = __le16_to_cpu(tx_stats->failed_pkts); ath10k_update_per_peer_tx_stats(ar, sta, p_tx_stats); } out: spin_unlock_bh(&ar->data_lock); rcu_read_unlock(); } bool ath10k_htt_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb) { struct ath10k_htt *htt = &ar->htt; struct htt_resp *resp = (struct htt_resp *)skb->data; enum htt_t2h_msg_type type; /* confirm alignment */ if (!IS_ALIGNED((unsigned long)skb->data, 4)) ath10k_warn(ar, "unaligned htt message, expect trouble\n"); ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, msg_type: 0x%0X\n", resp->hdr.msg_type); if (resp->hdr.msg_type >= ar->htt.t2h_msg_types_max) { ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, unsupported msg_type: 0x%0X\n max: 0x%0X", resp->hdr.msg_type, ar->htt.t2h_msg_types_max); return true; } type = ar->htt.t2h_msg_types[resp->hdr.msg_type]; switch (type) { case HTT_T2H_MSG_TYPE_VERSION_CONF: { htt->target_version_major = resp->ver_resp.major; htt->target_version_minor = resp->ver_resp.minor; complete(&htt->target_version_received); break; } case HTT_T2H_MSG_TYPE_RX_IND: ath10k_htt_rx_proc_rx_ind(htt, &resp->rx_ind); break; case HTT_T2H_MSG_TYPE_PEER_MAP: { struct htt_peer_map_event ev = { .vdev_id = resp->peer_map.vdev_id, .peer_id = __le16_to_cpu(resp->peer_map.peer_id), }; memcpy(ev.addr, resp->peer_map.addr, sizeof(ev.addr)); ath10k_peer_map_event(htt, &ev); break; } case HTT_T2H_MSG_TYPE_PEER_UNMAP: { struct htt_peer_unmap_event ev = { .peer_id = __le16_to_cpu(resp->peer_unmap.peer_id), }; ath10k_peer_unmap_event(htt, &ev); break; } case HTT_T2H_MSG_TYPE_MGMT_TX_COMPLETION: { struct htt_tx_done tx_done = {}; int status = __le32_to_cpu(resp->mgmt_tx_completion.status); tx_done.msdu_id = __le32_to_cpu(resp->mgmt_tx_completion.desc_id); switch (status) { case HTT_MGMT_TX_STATUS_OK: tx_done.status = HTT_TX_COMPL_STATE_ACK; break; case HTT_MGMT_TX_STATUS_RETRY: tx_done.status = HTT_TX_COMPL_STATE_NOACK; break; case HTT_MGMT_TX_STATUS_DROP: tx_done.status = HTT_TX_COMPL_STATE_DISCARD; break; } status = ath10k_txrx_tx_unref(htt, &tx_done); if (!status) { spin_lock_bh(&htt->tx_lock); ath10k_htt_tx_mgmt_dec_pending(htt); spin_unlock_bh(&htt->tx_lock); } break; } case HTT_T2H_MSG_TYPE_TX_COMPL_IND: ath10k_htt_rx_tx_compl_ind(htt->ar, skb); break; case HTT_T2H_MSG_TYPE_SEC_IND: { struct ath10k *ar = htt->ar; struct htt_security_indication *ev = &resp->security_indication; ath10k_dbg(ar, ATH10K_DBG_HTT, "sec ind peer_id %d unicast %d type %d\n", __le16_to_cpu(ev->peer_id), !!(ev->flags & HTT_SECURITY_IS_UNICAST), MS(ev->flags, HTT_SECURITY_TYPE)); complete(&ar->install_key_done); break; } case HTT_T2H_MSG_TYPE_RX_FRAG_IND: { ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ", skb->data, skb->len); atomic_inc(&htt->num_mpdus_ready); break; } case HTT_T2H_MSG_TYPE_TEST: break; case HTT_T2H_MSG_TYPE_STATS_CONF: trace_ath10k_htt_stats(ar, skb->data, skb->len); break; case HTT_T2H_MSG_TYPE_TX_INSPECT_IND: /* Firmware can return tx frames if it's unable to fully * process them and suspects host may be able to fix it. ath10k * sends all tx frames as already inspected so this shouldn't * happen unless fw has a bug. */ ath10k_warn(ar, "received an unexpected htt tx inspect event\n"); break; case HTT_T2H_MSG_TYPE_RX_ADDBA: ath10k_htt_rx_addba(ar, resp); break; case HTT_T2H_MSG_TYPE_RX_DELBA: ath10k_htt_rx_delba(ar, resp); break; case HTT_T2H_MSG_TYPE_PKTLOG: { trace_ath10k_htt_pktlog(ar, resp->pktlog_msg.payload, skb->len - offsetof(struct htt_resp, pktlog_msg.payload)); break; } case HTT_T2H_MSG_TYPE_RX_FLUSH: { /* Ignore this event because mac80211 takes care of Rx * aggregation reordering. */ break; } case HTT_T2H_MSG_TYPE_RX_IN_ORD_PADDR_IND: { __skb_queue_tail(&htt->rx_in_ord_compl_q, skb); return false; } case HTT_T2H_MSG_TYPE_TX_CREDIT_UPDATE_IND: break; case HTT_T2H_MSG_TYPE_CHAN_CHANGE: { u32 phymode = __le32_to_cpu(resp->chan_change.phymode); u32 freq = __le32_to_cpu(resp->chan_change.freq); ar->tgt_oper_chan = ieee80211_get_channel(ar->hw->wiphy, freq); ath10k_dbg(ar, ATH10K_DBG_HTT, "htt chan change freq %u phymode %s\n", freq, ath10k_wmi_phymode_str(phymode)); break; } case HTT_T2H_MSG_TYPE_AGGR_CONF: break; case HTT_T2H_MSG_TYPE_TX_FETCH_IND: { struct sk_buff *tx_fetch_ind = skb_copy(skb, GFP_ATOMIC); if (!tx_fetch_ind) { ath10k_warn(ar, "failed to copy htt tx fetch ind\n"); break; } skb_queue_tail(&htt->tx_fetch_ind_q, tx_fetch_ind); break; } case HTT_T2H_MSG_TYPE_TX_FETCH_CONFIRM: ath10k_htt_rx_tx_fetch_confirm(ar, skb); break; case HTT_T2H_MSG_TYPE_TX_MODE_SWITCH_IND: ath10k_htt_rx_tx_mode_switch_ind(ar, skb); break; case HTT_T2H_MSG_TYPE_PEER_STATS: ath10k_htt_fetch_peer_stats(ar, skb); break; case HTT_T2H_MSG_TYPE_EN_STATS: default: ath10k_warn(ar, "htt event (%d) not handled\n", resp->hdr.msg_type); ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ", skb->data, skb->len); break; }; return true; } EXPORT_SYMBOL(ath10k_htt_t2h_msg_handler); void ath10k_htt_rx_pktlog_completion_handler(struct ath10k *ar, struct sk_buff *skb) { trace_ath10k_htt_pktlog(ar, skb->data, skb->len); dev_kfree_skb_any(skb); } EXPORT_SYMBOL(ath10k_htt_rx_pktlog_completion_handler); int ath10k_htt_txrx_compl_task(struct ath10k *ar, int budget) { struct ath10k_htt *htt = &ar->htt; struct htt_tx_done tx_done = {}; struct sk_buff_head tx_ind_q; struct sk_buff *skb; unsigned long flags; int quota = 0, done, num_rx_msdus; bool resched_napi = false; __skb_queue_head_init(&tx_ind_q); /* Since in-ord-ind can deliver more than 1 A-MSDU in single event, * process it first to utilize full available quota. */ while (quota < budget) { if (skb_queue_empty(&htt->rx_in_ord_compl_q)) break; skb = __skb_dequeue(&htt->rx_in_ord_compl_q); if (!skb) { resched_napi = true; goto exit; } spin_lock_bh(&htt->rx_ring.lock); num_rx_msdus = ath10k_htt_rx_in_ord_ind(ar, skb); spin_unlock_bh(&htt->rx_ring.lock); if (num_rx_msdus < 0) { resched_napi = true; goto exit; } dev_kfree_skb_any(skb); if (num_rx_msdus > 0) quota += num_rx_msdus; if ((quota > ATH10K_NAPI_QUOTA_LIMIT) && !skb_queue_empty(&htt->rx_in_ord_compl_q)) { resched_napi = true; goto exit; } } while (quota < budget) { /* no more data to receive */ if (!atomic_read(&htt->num_mpdus_ready)) break; num_rx_msdus = ath10k_htt_rx_handle_amsdu(htt); if (num_rx_msdus < 0) { resched_napi = true; goto exit; } quota += num_rx_msdus; atomic_dec(&htt->num_mpdus_ready); if ((quota > ATH10K_NAPI_QUOTA_LIMIT) && atomic_read(&htt->num_mpdus_ready)) { resched_napi = true; goto exit; } } /* From NAPI documentation: * The napi poll() function may also process TX completions, in which * case if it processes the entire TX ring then it should count that * work as the rest of the budget. */ if ((quota < budget) && !kfifo_is_empty(&htt->txdone_fifo)) quota = budget; /* kfifo_get: called only within txrx_tasklet so it's neatly serialized. * From kfifo_get() documentation: * Note that with only one concurrent reader and one concurrent writer, * you don't need extra locking to use these macro. */ while (kfifo_get(&htt->txdone_fifo, &tx_done)) ath10k_txrx_tx_unref(htt, &tx_done); ath10k_mac_tx_push_pending(ar); spin_lock_irqsave(&htt->tx_fetch_ind_q.lock, flags); skb_queue_splice_init(&htt->tx_fetch_ind_q, &tx_ind_q); spin_unlock_irqrestore(&htt->tx_fetch_ind_q.lock, flags); while ((skb = __skb_dequeue(&tx_ind_q))) { ath10k_htt_rx_tx_fetch_ind(ar, skb); dev_kfree_skb_any(skb); } exit: ath10k_htt_rx_msdu_buff_replenish(htt); /* In case of rx failure or more data to read, report budget * to reschedule NAPI poll */ done = resched_napi ? budget : quota; return done; } EXPORT_SYMBOL(ath10k_htt_txrx_compl_task);