/* * Programmable Real-Time Unit Sub System (PRUSS) UIO driver (uio_pruss) * * This driver exports PRUSS host event out interrupts and PRUSS, L3 RAM, * and DDR RAM to user space for applications interacting with PRUSS firmware * * Copyright (C) 2010-11 Texas Instruments Incorporated - http://www.ti.com/ * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation version 2. * * This program is distributed "as is" WITHOUT ANY WARRANTY of any * kind, whether express or implied; without even the implied warranty * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #define DRV_NAME "pruss_uio" #define DRV_VERSION "1.0" static int sram_pool_sz = SZ_16K; module_param(sram_pool_sz, int, 0); MODULE_PARM_DESC(sram_pool_sz, "sram pool size to allocate "); static int extram_pool_sz = SZ_256K; module_param(extram_pool_sz, int, 0); MODULE_PARM_DESC(extram_pool_sz, "external ram pool size to allocate"); /* * Host event IRQ numbers from PRUSS - PRUSS can generate up to 8 interrupt * events to AINTC of ARM host processor - which can be used for IPC b/w PRUSS * firmware and user space application, async notification from PRU firmware * to user space application * 3 PRU_EVTOUT0 * 4 PRU_EVTOUT1 * 5 PRU_EVTOUT2 * 6 PRU_EVTOUT3 * 7 PRU_EVTOUT4 * 8 PRU_EVTOUT5 * 9 PRU_EVTOUT6 * 10 PRU_EVTOUT7 */ #define MAX_PRUSS_EVT 8 #define PINTC_HIDISR 0x0038 #define PINTC_HIPIR 0x0900 #define HIPIR_NOPEND 0x80000000 #define PINTC_HIER 0x1500 struct uio_pruss_dev { struct uio_info *info; struct clk *pruss_clk; dma_addr_t sram_paddr; dma_addr_t ddr_paddr; void __iomem *prussio_vaddr; unsigned long sram_vaddr; void *ddr_vaddr; unsigned int hostirq_start; unsigned int pintc_base; struct gen_pool *sram_pool; }; static irqreturn_t pruss_handler(int irq, struct uio_info *info) { struct uio_pruss_dev *gdev = info->priv; int intr_bit = (irq - gdev->hostirq_start + 2); int val, intr_mask = (1 << intr_bit); void __iomem *base = gdev->prussio_vaddr + gdev->pintc_base; void __iomem *intren_reg = base + PINTC_HIER; void __iomem *intrdis_reg = base + PINTC_HIDISR; void __iomem *intrstat_reg = base + PINTC_HIPIR + (intr_bit << 2); val = ioread32(intren_reg); /* Is interrupt enabled and active ? */ if (!(val & intr_mask) && (ioread32(intrstat_reg) & HIPIR_NOPEND)) return IRQ_NONE; /* Disable interrupt */ iowrite32(intr_bit, intrdis_reg); return IRQ_HANDLED; } static void pruss_cleanup(struct device *dev, struct uio_pruss_dev *gdev) { int cnt; struct uio_info *p = gdev->info; for (cnt = 0; cnt < MAX_PRUSS_EVT; cnt++, p++) { uio_unregister_device(p); kfree(p->name); } iounmap(gdev->prussio_vaddr); if (gdev->ddr_vaddr) { dma_free_coherent(dev, extram_pool_sz, gdev->ddr_vaddr, gdev->ddr_paddr); } if (gdev->sram_vaddr) gen_pool_free(gdev->sram_pool, gdev->sram_vaddr, sram_pool_sz); kfree(gdev->info); clk_disable(gdev->pruss_clk); clk_put(gdev->pruss_clk); kfree(gdev); } static int pruss_probe(struct platform_device *pdev) { struct uio_info *p; struct uio_pruss_dev *gdev; struct resource *regs_prussio; struct device *dev = &pdev->dev; int ret = -ENODEV, cnt = 0, len; struct uio_pruss_pdata *pdata = dev_get_platdata(dev); gdev = kzalloc(sizeof(struct uio_pruss_dev), GFP_KERNEL); if (!gdev) return -ENOMEM; gdev->info = kzalloc(sizeof(*p) * MAX_PRUSS_EVT, GFP_KERNEL); if (!gdev->info) { kfree(gdev); return -ENOMEM; } /* Power on PRU in case its not done as part of boot-loader */ gdev->pruss_clk = clk_get(dev, "pruss"); if (IS_ERR(gdev->pruss_clk)) { dev_err(dev, "Failed to get clock\n"); ret = PTR_ERR(gdev->pruss_clk); kfree(gdev->info); kfree(gdev); return ret; } else { ret = clk_enable(gdev->pruss_clk); if (ret) { dev_err(dev, "Failed to enable clock\n"); clk_put(gdev->pruss_clk); kfree(gdev->info); kfree(gdev); return ret; } } regs_prussio = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!regs_prussio) { dev_err(dev, "No PRUSS I/O resource specified\n"); goto out_free; } if (!regs_prussio->start) { dev_err(dev, "Invalid memory resource\n"); goto out_free; } if (pdata->sram_pool) { gdev->sram_pool = pdata->sram_pool; gdev->sram_vaddr = (unsigned long)gen_pool_dma_alloc(gdev->sram_pool, sram_pool_sz, &gdev->sram_paddr); if (!gdev->sram_vaddr) { dev_err(dev, "Could not allocate SRAM pool\n"); goto out_free; } } gdev->ddr_vaddr = dma_alloc_coherent(dev, extram_pool_sz, &(gdev->ddr_paddr), GFP_KERNEL | GFP_DMA); if (!gdev->ddr_vaddr) { dev_err(dev, "Could not allocate external memory\n"); goto out_free; } len = resource_size(regs_prussio); gdev->prussio_vaddr = ioremap(regs_prussio->start, len); if (!gdev->prussio_vaddr) { dev_err(dev, "Can't remap PRUSS I/O address range\n"); goto out_free; } gdev->pintc_base = pdata->pintc_base; gdev->hostirq_start = platform_get_irq(pdev, 0); for (cnt = 0, p = gdev->info; cnt < MAX_PRUSS_EVT; cnt++, p++) { p->mem[0].addr = regs_prussio->start; p->mem[0].size = resource_size(regs_prussio); p->mem[0].memtype = UIO_MEM_PHYS; p->mem[1].addr = gdev->sram_paddr; p->mem[1].size = sram_pool_sz; p->mem[1].memtype = UIO_MEM_PHYS; p->mem[2].addr = gdev->ddr_paddr; p->mem[2].size = extram_pool_sz; p->mem[2].memtype = UIO_MEM_PHYS; p->name = kasprintf(GFP_KERNEL, "pruss_evt%d", cnt); p->version = DRV_VERSION; /* Register PRUSS IRQ lines */ p->irq = gdev->hostirq_start + cnt; p->handler = pruss_handler; p->priv = gdev; ret = uio_register_device(dev, p); if (ret < 0) goto out_free; } platform_set_drvdata(pdev, gdev); return 0; out_free: pruss_cleanup(dev, gdev); return ret; } static int pruss_remove(struct platform_device *dev) { struct uio_pruss_dev *gdev = platform_get_drvdata(dev); pruss_cleanup(&dev->dev, gdev); return 0; } static struct platform_driver pruss_driver = { .probe = pruss_probe, .remove = pruss_remove, .driver = { .name = DRV_NAME, }, }; module_platform_driver(pruss_driver); MODULE_LICENSE("GPL v2"); MODULE_VERSION(DRV_VERSION); MODULE_AUTHOR("Amit Chatterjee "); MODULE_AUTHOR("Pratheesh Gangadhar "); -msg'>I was under the misconception that the sysfs dev stuff can be fully set up, and then registered all in one step with device_add. That's true for properties and property groups, but not for parents and child devices. Those must be fully registered before you can register a child. Add a bit of tracking to make sure that asynchronous mst connector hotplugging gets this right. For consistency we rely upon the implicit barriers of the connector->mutex, which is taken anyway, to ensure that at least either the connector or device registration call will work out. Mildly tested since I can't reliably reproduce this on my mst box here. Reported-by: Dave Hansen <dave.hansen@intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Acked-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Daniel Vetter <daniel.vetter@intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/1484237756-2720-1-git-send-email-daniel.vetter@ffwll.ch
Diffstat (limited to 'tools/perf/tests/switch-tracking.c')