/* * * Includes for cdc-acm.c * * Mainly take from usbnet's cdc-ether part * */ /* * CMSPAR, some architectures can't have space and mark parity. */ #ifndef CMSPAR #define CMSPAR 0 #endif /* * Major and minor numbers. */ #define ACM_TTY_MAJOR 166 #define ACM_TTY_MINORS 256 /* * Requests. */ #define USB_RT_ACM (USB_TYPE_CLASS | USB_RECIP_INTERFACE) /* * Output control lines. */ #define ACM_CTRL_DTR 0x01 #define ACM_CTRL_RTS 0x02 /* * Input control lines and line errors. */ #define ACM_CTRL_DCD 0x01 #define ACM_CTRL_DSR 0x02 #define ACM_CTRL_BRK 0x04 #define ACM_CTRL_RI 0x08 #define ACM_CTRL_FRAMING 0x10 #define ACM_CTRL_PARITY 0x20 #define ACM_CTRL_OVERRUN 0x40 /* * Internal driver structures. */ /* * The only reason to have several buffers is to accommodate assumptions * in line disciplines. They ask for empty space amount, receive our URB size, * and proceed to issue several 1-character writes, assuming they will fit. * The very first write takes a complete URB. Fortunately, this only happens * when processing onlcr, so we only need 2 buffers. These values must be * powers of 2. */ #define ACM_NW 16 #define ACM_NR 16 struct acm_wb { unsigned char *buf; dma_addr_t dmah; int len; int use; struct urb *urb; struct acm *instance; }; struct acm_rb { int size; unsigned char *base; dma_addr_t dma; int index; struct acm *instance; }; struct acm { struct usb_device *dev; /* the corresponding usb device */ struct usb_interface *control; /* control interface */ struct usb_interface *data; /* data interface */ unsigned in, out; /* i/o pipes */ struct tty_port port; /* our tty port data */ struct urb *ctrlurb; /* urbs */ u8 *ctrl_buffer; /* buffers of urbs */ dma_addr_t ctrl_dma; /* dma handles of buffers */ u8 *country_codes; /* country codes from device */ unsigned int country_code_size; /* size of this buffer */ unsigned int country_rel_date; /* release date of version */ struct acm_wb wb[ACM_NW]; unsigned long read_urbs_free; struct urb *read_urbs[ACM_NR]; struct acm_rb read_buffers[ACM_NR]; struct acm_wb *putbuffer; /* for acm_tty_put_char() */ int rx_buflimit; spinlock_t read_lock; int write_used; /* number of non-empty write buffers */ int transmitting; spinlock_t write_lock; struct mutex mutex; bool disconnected; unsigned long flags; # define EVENT_TTY_WAKEUP 0 # define EVENT_RX_STALL 1 struct usb_cdc_line_coding line; /* bits, stop, parity */ struct work_struct work; /* work queue entry for line discipline waking up */ unsigned int ctrlin; /* input control lines (DCD, DSR, RI, break, overruns) */ unsigned int ctrlout; /* output control lines (DTR, RTS) */ struct async_icount iocount; /* counters for control line changes */ struct async_icount oldcount; /* for comparison of counter */ wait_queue_head_t wioctl; /* for ioctl */ unsigned int writesize; /* max packet size for the output bulk endpoint */ unsigned int readsize,ctrlsize; /* buffer sizes for freeing */ unsigned int minor; /* acm minor number */ unsigned char clocal; /* termios CLOCAL */ unsigned int ctrl_caps; /* control capabilities from the class specific header */ unsigned int susp_count; /* number of suspended interfaces */ unsigned int combined_interfaces:1; /* control and data collapsed */ unsigned int throttled:1; /* actually throttled */ unsigned int throttle_req:1; /* throttle requested */ u8 bInterval; struct usb_anchor delayed; /* writes queued for a device about to be woken */ unsigned long quirks; }; #define CDC_DATA_INTERFACE_TYPE 0x0a /* constants describing various quirks and errors */ #define NO_UNION_NORMAL BIT(0) #define SINGLE_RX_URB BIT(1) #define NO_CAP_LINE BIT(2) #define NO_DATA_INTERFACE BIT(4) #define IGNORE_DEVICE BIT(5) #define QUIRK_CONTROL_LINE_STATE BIT(6) #define CLEAR_HALT_CONDITIONS BIT(7) #define SEND_ZERO_PACKET BIT(8) -2/+4