/* * usb/gadget/config.c -- simplify building config descriptors * * Copyright (C) 2003 David Brownell * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include /** * usb_descriptor_fillbuf - fill buffer with descriptors * @buf: Buffer to be filled * @buflen: Size of buf * @src: Array of descriptor pointers, terminated by null pointer. * * Copies descriptors into the buffer, returning the length or a * negative error code if they can't all be copied. Useful when * assembling descriptors for an associated set of interfaces used * as part of configuring a composite device; or in other cases where * sets of descriptors need to be marshaled. */ int usb_descriptor_fillbuf(void *buf, unsigned buflen, const struct usb_descriptor_header **src) { u8 *dest = buf; if (!src) return -EINVAL; /* fill buffer from src[] until null descriptor ptr */ for (; NULL != *src; src++) { unsigned len = (*src)->bLength; if (len > buflen) return -EINVAL; memcpy(dest, *src, len); buflen -= len; dest += len; } return dest - (u8 *)buf; } EXPORT_SYMBOL_GPL(usb_descriptor_fillbuf); /** * usb_gadget_config_buf - builts a complete configuration descriptor * @config: Header for the descriptor, including characteristics such * as power requirements and number of interfaces. * @desc: Null-terminated vector of pointers to the descriptors (interface, * endpoint, etc) defining all functions in this device configuration. * @buf: Buffer for the resulting configuration descriptor. * @length: Length of buffer. If this is not big enough to hold the * entire configuration descriptor, an error code will be returned. * * This copies descriptors into the response buffer, building a descriptor * for that configuration. It returns the buffer length or a negative * status code. The config.wTotalLength field is set to match the length * of the result, but other descriptor fields (including power usage and * interface count) must be set by the caller. * * Gadget drivers could use this when constructing a config descriptor * in response to USB_REQ_GET_DESCRIPTOR. They will need to patch the * resulting bDescriptorType value if USB_DT_OTHER_SPEED_CONFIG is needed. */ int usb_gadget_config_buf( const struct usb_config_descriptor *config, void *buf, unsigned length, const struct usb_descriptor_header **desc ) { struct usb_config_descriptor *cp = buf; int len; /* config descriptor first */ if (length < USB_DT_CONFIG_SIZE || !desc) return -EINVAL; *cp = *config; /* then interface/endpoint/class/vendor/... */ len = usb_descriptor_fillbuf(USB_DT_CONFIG_SIZE + (u8 *)buf, length - USB_DT_CONFIG_SIZE, desc); if (len < 0) return len; len += USB_DT_CONFIG_SIZE; if (len > 0xffff) return -EINVAL; /* patch up the config descriptor */ cp->bLength = USB_DT_CONFIG_SIZE; cp->bDescriptorType = USB_DT_CONFIG; cp->wTotalLength = cpu_to_le16(len); cp->bmAttributes |= USB_CONFIG_ATT_ONE; return len; } EXPORT_SYMBOL_GPL(usb_gadget_config_buf); /** * usb_copy_descriptors - copy a vector of USB descriptors * @src: null-terminated vector to copy * Context: initialization code, which may sleep * * This makes a copy of a vector of USB descriptors. Its primary use * is to support usb_function objects which can have multiple copies, * each needing different descriptors. Functions may have static * tables of descriptors, which are used as templates and customized * with identifiers (for interfaces, strings, endpoints, and more) * as needed by a given function instance. */ struct usb_descriptor_header ** usb_copy_descriptors(struct usb_descriptor_header **src) { struct usb_descriptor_header **tmp; unsigned bytes; unsigned n_desc; void *mem; struct usb_descriptor_header **ret; /* count descriptors and their sizes; then add vector size */ for (bytes = 0, n_desc = 0, tmp = src; *tmp; tmp++, n_desc++) bytes += (*tmp)->bLength; bytes += (n_desc + 1) * sizeof(*tmp); mem = kmalloc(bytes, GFP_KERNEL); if (!mem) return NULL; /* fill in pointers starting at "tmp", * to descriptors copied starting at "mem"; * and return "ret" */ tmp = mem; ret = mem; mem += (n_desc + 1) * sizeof(*tmp); while (*src) { memcpy(mem, *src, (*src)->bLength); *tmp = mem; tmp++; mem += (*src)->bLength; src++; } *tmp = NULL; return ret; } EXPORT_SYMBOL_GPL(usb_copy_descriptors); int usb_assign_descriptors(struct usb_function *f, struct usb_descriptor_header **fs, struct usb_descriptor_header **hs, struct usb_descriptor_header **ss, struct usb_descriptor_header **ssp) { struct usb_gadget *g = f->config->cdev->gadget; if (fs) { f->fs_descriptors = usb_copy_descriptors(fs); if (!f->fs_descriptors) goto err; } if (hs && gadget_is_dualspeed(g)) { f->hs_descriptors = usb_copy_descriptors(hs); if (!f->hs_descriptors) goto err; } if (ss && gadget_is_superspeed(g)) { f->ss_descriptors = usb_copy_descriptors(ss); if (!f->ss_descriptors) goto err; } if (ssp && gadget_is_superspeed_plus(g)) { f->ssp_descriptors = usb_copy_descriptors(ssp); if (!f->ssp_descriptors) goto err; } return 0; err: usb_free_all_descriptors(f); return -ENOMEM; } EXPORT_SYMBOL_GPL(usb_assign_descriptors); void usb_free_all_descriptors(struct usb_function *f) { usb_free_descriptors(f->fs_descriptors); usb_free_descriptors(f->hs_descriptors); usb_free_descriptors(f->ss_descriptors); usb_free_descriptors(f->ssp_descriptors); } EXPORT_SYMBOL_GPL(usb_free_all_descriptors); struct usb_descriptor_header *usb_otg_descriptor_alloc( struct usb_gadget *gadget) { struct usb_descriptor_header *otg_desc; unsigned length = 0; if (gadget->otg_caps && (gadget->otg_caps->otg_rev >= 0x0200)) length = sizeof(struct usb_otg20_descriptor); else length = sizeof(struct usb_otg_descriptor); otg_desc = kzalloc(length, GFP_KERNEL); return otg_desc; } EXPORT_SYMBOL_GPL(usb_otg_descriptor_alloc); int usb_otg_descriptor_init(struct usb_gadget *gadget, struct usb_descriptor_header *otg_desc) { struct usb_otg_descriptor *otg1x_desc; struct usb_otg20_descriptor *otg20_desc; struct usb_otg_caps *otg_caps = gadget->otg_caps; u8 otg_attributes = 0; if (!otg_desc) return -EINVAL; if (otg_caps && otg_caps->otg_rev) { if (otg_caps->hnp_support) otg_attributes |= USB_OTG_HNP; if (otg_caps->srp_support) otg_attributes |= USB_OTG_SRP; if (otg_caps->adp_support && (otg_caps->otg_rev >= 0x0200)) otg_attributes |= USB_OTG_ADP; } else { otg_attributes = USB_OTG_SRP | USB_OTG_HNP; } if (otg_caps && (otg_caps->otg_rev >= 0x0200)) { otg20_desc = (struct usb_otg20_descriptor *)otg_desc; otg20_desc->bLength = sizeof(struct usb_otg20_descriptor); otg20_desc->bDescriptorType = USB_DT_OTG; otg20_desc->bmAttributes = otg_attributes; otg20_desc->bcdOTG = cpu_to_le16(otg_caps->otg_rev); } else { otg1x_desc = (struct usb_otg_descriptor *)otg_desc; otg1x_desc->bLength = sizeof(struct usb_otg_descriptor); otg1x_desc->bDescriptorType = USB_DT_OTG; otg1x_desc->bmAttributes = otg_attributes; } return 0; } EXPORT_SYMBOL_GPL(usb_otg_descriptor_init); eriods from workqueue"). Note that the code was buggy even before this commit, as it was subject to failure on real-time systems that forced all expedited grace periods to run as normal grace periods (for example, using the rcu_normal ksysfs parameter). The callchain from the failure case is as follows: early_amd_iommu_init() |-> acpi_put_table(ivrs_base); |-> acpi_tb_put_table(table_desc); |-> acpi_tb_invalidate_table(table_desc); |-> acpi_tb_release_table(...) |-> acpi_os_unmap_memory |-> acpi_os_unmap_iomem |-> acpi_os_map_cleanup |-> synchronize_rcu_expedited The kernel showing this callchain was built with CONFIG_PREEMPT_RCU=y, which caused the code to try using workqueues before they were initialized, which did not go well. This commit therefore reworks RCU to permit synchronous grace periods to proceed during this mid-boot phase. This commit is therefore a fix to a regression introduced in v4.9, and is therefore being put forward post-merge-window in v4.10. This commit sets a flag from the existing rcu_scheduler_starting() function which causes all synchronous grace periods to take the expedited path. The expedited path now checks this flag, using the requesting task to drive the expedited grace period forward during the mid-boot phase. Finally, this flag is updated by a core_initcall() function named rcu_exp_runtime_mode(), which causes the runtime codepaths to be used. Note that this arrangement assumes that tasks are not sent POSIX signals (or anything similar) from the time that the first task is spawned through core_initcall() time. Fixes: 8b355e3bc140 ("rcu: Drive expedited grace periods from workqueue") Reported-by: "Zheng, Lv" <lv.zheng@intel.com> Reported-by: Borislav Petkov <bp@alien8.de> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Tested-by: Stan Kain <stan.kain@gmail.com> Tested-by: Ivan <waffolz@hotmail.com> Tested-by: Emanuel Castelo <emanuel.castelo@gmail.com> Tested-by: Bruno Pesavento <bpesavento@infinito.it> Tested-by: Borislav Petkov <bp@suse.de> Tested-by: Frederic Bezies <fredbezies@gmail.com> Cc: <stable@vger.kernel.org> # 4.9.0-
Diffstat (limited to 'sound/soc/codecs/tfa9879.c')