#include #include #include #include #include static LIST_HEAD(func_list); static DEFINE_MUTEX(func_lock); static struct usb_function_instance *try_get_usb_function_instance(const char *name) { struct usb_function_driver *fd; struct usb_function_instance *fi; fi = ERR_PTR(-ENOENT); mutex_lock(&func_lock); list_for_each_entry(fd, &func_list, list) { if (strcmp(name, fd->name)) continue; if (!try_module_get(fd->mod)) { fi = ERR_PTR(-EBUSY); break; } fi = fd->alloc_inst(); if (IS_ERR(fi)) module_put(fd->mod); else fi->fd = fd; break; } mutex_unlock(&func_lock); return fi; } struct usb_function_instance *usb_get_function_instance(const char *name) { struct usb_function_instance *fi; int ret; fi = try_get_usb_function_instance(name); if (!IS_ERR(fi)) return fi; ret = PTR_ERR(fi); if (ret != -ENOENT) return fi; ret = request_module("usbfunc:%s", name); if (ret < 0) return ERR_PTR(ret); return try_get_usb_function_instance(name); } EXPORT_SYMBOL_GPL(usb_get_function_instance); struct usb_function *usb_get_function(struct usb_function_instance *fi) { struct usb_function *f; f = fi->fd->alloc_func(fi); if (IS_ERR(f)) return f; f->fi = fi; return f; } EXPORT_SYMBOL_GPL(usb_get_function); void usb_put_function_instance(struct usb_function_instance *fi) { struct module *mod; if (!fi) return; mod = fi->fd->mod; fi->free_func_inst(fi); module_put(mod); } EXPORT_SYMBOL_GPL(usb_put_function_instance); void usb_put_function(struct usb_function *f) { if (!f) return; f->free_func(f); } EXPORT_SYMBOL_GPL(usb_put_function); int usb_function_register(struct usb_function_driver *newf) { struct usb_function_driver *fd; int ret; ret = -EEXIST; mutex_lock(&func_lock); list_for_each_entry(fd, &func_list, list) { if (!strcmp(fd->name, newf->name)) goto out; } ret = 0; list_add_tail(&newf->list, &func_list); out: mutex_unlock(&func_lock); return ret; } EXPORT_SYMBOL_GPL(usb_function_register); void usb_function_unregister(struct usb_function_driver *fd) { mutex_lock(&func_lock); list_del(&fd->list); mutex_unlock(&func_lock); } EXPORT_SYMBOL_GPL(usb_function_unregister);
diff options
context:
space:
mode:
authorDavid S. Miller <davem@davemloft.net>2017-01-30 14:28:22 -0800
committerDavid S. Miller <davem@davemloft.net>2017-01-30 14:28:22 -0800
commit54791b276b4000b307339f269d3bf7db877d536f (patch)
tree1c2616bd373ce5ea28aac2a53e32f5b5834901ce /fs/cifs/cache.c
parent5d0e7705774dd412a465896d08d59a81a345c1e4 (diff)
parent047487241ff59374fded8c477f21453681f5995c (diff)
Merge branch 'sparc64-non-resumable-user-error-recovery'
Liam R. Howlett says: ==================== sparc64: Recover from userspace non-resumable PIO & MEM errors A non-resumable error from userspace is able to cause a kernel panic or trap loop due to the setup and handling of the queued traps once in the kernel. This patch series addresses both of these issues. The queues are fixed by simply zeroing the memory before use. PIO errors from userspace will result in a SIGBUS being sent to the user process. The MEM errors form userspace will result in a SIGKILL and also cause the offending pages to be claimed so they are no longer used in future tasks. SIGKILL is used to ensure that the process does not try to coredump and result in an attempt to read the memory again from within kernel space. Although there is a HV call to scrub the memory (mem_scrub), there is no easy way to guarantee that the real memory address(es) are not used by other tasks. Clearing the error with mem_scrub would zero the memory and cause the other processes to proceed with bad data. The handling of other non-resumable errors remain unchanged and will cause a panic. ==================== Signed-off-by: David S. Miller <davem@davemloft.net>
Diffstat (limited to 'fs/cifs/cache.c')