/* * linux/drivers/video/cyber2000fb.c * * Copyright (C) 1998-2002 Russell King * * MIPS and 50xx clock support * Copyright (C) 2001 Bradley D. LaRonde <brad@ltc.com> * * 32 bit support, text color and panning fixes for modes != 8 bit * Copyright (C) 2002 Denis Oliver Kropp <dok@directfb.org> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * Integraphics CyberPro 2000, 2010 and 5000 frame buffer device * * Based on cyberfb.c. * * Note that we now use the new fbcon fix, var and cmap scheme. We do * still have to check which console is the currently displayed one * however, especially for the colourmap stuff. * * We also use the new hotplug PCI subsystem. I'm not sure if there * are any such cards, but I'm erring on the side of caution. We don't * want to go pop just because someone does have one. * * Note that this doesn't work fully in the case of multiple CyberPro * cards with grabbers. We currently can only attach to the first * CyberPro card found. * * When we're in truecolour mode, we power down the LUT RAM as a power * saving feature. Also, when we enter any of the powersaving modes * (except soft blanking) we power down the RAMDACs. This saves about * 1W, which is roughly 8% of the power consumption of a NetWinder * (which, incidentally, is about the same saving as a 2.5in hard disk * entering standby mode.) */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/errno.h> #include <linux/string.h> #include <linux/mm.h> #include <linux/slab.h> #include <linux/delay.h> #include <linux/fb.h> #include <linux/pci.h> #include <linux/init.h> #include <linux/io.h> #include <linux/i2c.h> #include <linux/i2c-algo-bit.h> #include <asm/pgtable.h> #ifdef __arm__ #include <asm/mach-types.h> #endif #include "cyber2000fb.h" struct cfb_info { struct fb_info fb; struct display_switch *dispsw; struct display *display; unsigned char __iomem *region; unsigned char __iomem *regs; u_int id; u_int irq; int func_use_count; u_long ref_ps; /* * Clock divisors */ u_int divisors[4]; struct { u8 red, green, blue; } palette[NR_PALETTE]; u_char mem_ctl1; u_char mem_ctl2; u_char mclk_mult; u_char mclk_div; /* * RAMDAC control register is both of these or'ed together */ u_char ramdac_ctrl; u_char ramdac_powerdown; u32 pseudo_palette[16]; spinlock_t reg_b0_lock; #ifdef CONFIG_FB_CYBER2000_DDC bool ddc_registered; struct i2c_adapter ddc_adapter; struct i2c_algo_bit_data ddc_algo; #endif #ifdef CONFIG_FB_CYBER2000_I2C struct i2c_adapter i2c_adapter; struct i2c_algo_bit_data i2c_algo; #endif }; static char *default_font = "Acorn8x8"; module_param(default_font, charp, 0); MODULE_PARM_DESC(default_font, "Default font name"); /* * Our access methods. */ #define cyber2000fb_writel(val, reg, cfb) writel(val, (cfb)->regs + (reg)) #define cyber2000fb_writew(val, reg, cfb) writew(val, (cfb)->regs + (reg)) #define cyber2000fb_writeb(val, reg, cfb) writeb(val, (cfb)->regs + (reg)) #define cyber2000fb_readb(reg, cfb) readb((cfb)->regs + (reg)) static inline void cyber2000_crtcw(unsigned int reg, unsigned int val, struct cfb_info *cfb) { cyber2000fb_writew((reg & 255) | val << 8, 0x3d4, cfb); } static inline void cyber2000_grphw(unsigned int reg, unsigned int val, struct cfb_info *cfb) { cyber2000fb_writew((reg & 255) | val << 8, 0x3ce, cfb); } static inline unsigned int cyber2000_grphr(unsigned int reg, struct cfb_info *cfb) { cyber2000fb_writeb(reg, 0x3ce, cfb); return cyber2000fb_readb(0x3cf, cfb); } static inline void cyber2000_attrw(unsigned int reg, unsigned int val, struct cfb_info *cfb) { cyber2000fb_readb(0x3da, cfb); cyber2000fb_writeb(reg, 0x3c0, cfb); cyber2000fb_readb(0x3c1, cfb); cyber2000fb_writeb(val, 0x3c0, cfb); } static inline void cyber2000_seqw(unsigned int reg, unsigned int val, struct cfb_info *cfb) { cyber2000fb_writew((reg & 255) | val << 8, 0x3c4, cfb); } /* -------------------- Hardware specific routines ------------------------- */ /* * Hardware Cyber2000 Acceleration */ static void cyber2000fb_fillrect(struct fb_info *info, const struct fb_fillrect *rect) { struct cfb_info *cfb = container_of(info, struct cfb_info, fb); unsigned long dst, col; if (!(cfb->fb.var.accel_flags & FB_ACCELF_TEXT)) { cfb_fillrect(info, rect); return; } cyber2000fb_writeb(0, CO_REG_CONTROL, cfb); cyber2000fb_writew(rect->width - 1, CO_REG_PIXWIDTH, cfb); cyber2000fb_writew(rect->height - 1, CO_REG_PIXHEIGHT, cfb); col = rect->color; if (cfb->fb.var.bits_per_pixel > 8) col = ((u32 *)cfb->fb.pseudo_palette)[col]; cyber2000fb_writel(col, CO_REG_FGCOLOUR, cfb); dst = rect->dx + rect->dy * cfb->fb.var.xres_virtual; if (cfb->fb.var.bits_per_pixel == 24) { cyber2000fb_writeb(dst, CO_REG_X_PHASE, cfb); dst *= 3; } cyber2000fb_writel(dst, CO_REG_DEST_PTR, cfb); cyber2000fb_writeb(CO_FG_MIX_SRC, CO_REG_FGMIX, cfb); cyber2000fb_writew(CO_CMD_L_PATTERN_FGCOL, CO_REG_CMD_L, cfb); cyber2000fb_writew(CO_CMD_H_BLITTER, CO_REG_CMD_H, cfb); } static void cyber2000fb_copyarea(struct fb_info *info, const struct fb_copyarea *region) { struct cfb_info *cfb = container_of(info, struct cfb_info, fb); unsigned int cmd = CO_CMD_L_PATTERN_FGCOL; unsigned long src, dst; if (!(cfb->fb.var.accel_flags & FB_ACCELF_TEXT)) { cfb_copyarea(info, region); return; } cyber2000fb_writeb(0, CO_REG_CONTROL, cfb); cyber2000fb_writew(region->width - 1, CO_REG_PIXWIDTH, cfb); cyber2000fb_writew(region->height - 1, CO_REG_PIXHEIGHT, cfb); src = region->sx + region->sy * cfb->fb.var.xres_virtual; dst = region->dx + region->dy * cfb->fb.var.xres_virtual; if (region->sx < region->dx) { src += region->width - 1; dst += region->width - 1; cmd |= CO_CMD_L_INC_LEFT; } if (region->sy < region->dy) { src += (region->height - 1) * cfb->fb.var.xres_virtual; dst += (region->height - 1) * cfb->fb.var.xres_virtual; cmd |= CO_CMD_L_INC_UP; } if (cfb->fb.var.bits_per_pixel == 24) { cyber2000fb_writeb(dst, CO_REG_X_PHASE, cfb); src *= 3; dst *= 3; } cyber2000fb_writel(src, CO_REG_SRC1_PTR, cfb); cyber2000fb_writel(dst, CO_REG_DEST_PTR, cfb); cyber2000fb_writew(CO_FG_MIX_SRC, CO_REG_FGMIX, cfb); cyber2000fb_writew(cmd, CO_REG_CMD_L, cfb); cyber2000fb_writew(CO_CMD_H_FGSRCMAP | CO_CMD_H_BLITTER, CO_REG_CMD_H, cfb); } static void cyber2000fb_imageblit(struct fb_info *info, const struct fb_image *image) { cfb_imageblit(info, image); return; } static int cyber2000fb_sync(struct fb_info *info) { struct cfb_info *cfb = container_of(info, struct cfb_info, fb); int count = 100000; if (!(cfb->fb.var.accel_flags & FB_ACCELF_TEXT)) return 0; while (cyber2000fb_readb(CO_REG_CONTROL, cfb) & CO_CTRL_BUSY) { if (!count--) { debug_printf("accel_wait timed out\n"); cyber2000fb_writeb(0, CO_REG_CONTROL, cfb); break; } udelay(1); } return 0; } /* * =========================================================================== */ static inline u32 convert_bitfield(u_int val, struct fb_bitfield *bf) { u_int mask = (1 << bf->length) - 1; return (val >> (16 - bf->length) & mask) << bf->offset; } /* * Set a single color register. Return != 0 for invalid regno. */ static int cyber2000fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue, u_int transp, struct fb_info *info) { struct cfb_info *cfb = container_of(info, struct cfb_info, fb); struct fb_var_screeninfo *var = &cfb->fb.var; u32 pseudo_val; int ret = 1; switch (cfb->fb.fix.visual) { default: return 1; /* * Pseudocolour: * 8 8 * pixel --/--+--/--> red lut --> red dac * | 8 * +--/--> green lut --> green dac * | 8 * +--/--> blue lut --> blue dac */ case FB_VISUAL_PSEUDOCOLOR: if (regno >= NR_PALETTE) return 1; red >>= 8; green >>= 8; blue >>= 8; cfb->palette[regno].red = red; cfb->palette[regno].green = green; cfb->palette[regno].blue = blue; cyber2000fb_writeb(regno, 0x3c8, cfb); cyber2000fb_writeb(red, 0x3c9, cfb); cyber2000fb_writeb(green, 0x3c9, cfb); cyber2000fb_writeb(blue, 0x3c9, cfb); return 0; /* * Direct colour: * n rl * pixel --/--+--/--> red lut --> red dac * | gl * +--/--> green lut --> green dac * | bl * +--/--> blue lut --> blue dac * n = bpp, rl = red length, gl = green length, bl = blue length */ case FB_VISUAL_DIRECTCOLOR: red >>= 8; green >>= 8; blue >>= 8; if (var->green.length == 6 && regno < 64) { cfb->palette[regno << 2].green = green; /* * The 6 bits of the green component are applied * to the high 6 bits of the LUT. */ cyber2000fb_writeb(regno << 2, 0x3c8, cfb); cyber2000fb_writeb(cfb->palette[regno >> 1].red, 0x3c9, cfb); cyber2000fb_writeb(green, 0x3c9, cfb); cyber2000fb_writeb(cfb->palette[regno >> 1].blue, 0x3c9, cfb); green = cfb->palette[regno << 3].green; ret = 0; } if (var->green.length >= 5 && regno < 32) { cfb->palette[regno << 3].red = red; cfb->palette[regno << 3].green = green; cfb->palette[regno << 3].blue = blue; /* * The 5 bits of each colour component are * applied to the high 5 bits of the LUT. */ cyber2000fb_writeb(regno << 3, 0x3c8, cfb); cyber2000fb_writeb(red, 0x3c9, cfb); cyber2000fb_writeb(green, 0x3c9, cfb); cyber2000fb_writeb(blue, 0x3c9, cfb); ret = 0; } if (var->green.length == 4 && regno < 16) { cfb->palette[regno << 4].red = red; cfb->palette[regno << 4].green = green; cfb->palette[regno << 4].blue = blue; /* * The 5 bits of each colour component are * applied to the high 5 bits of the LUT. */ cyber2000fb_writeb(regno << 4, 0x3c8, cfb); cyber2000fb_writeb(red, 0x3c9, cfb); cyber2000fb_writeb(green, 0x3c9, cfb); cyber2000fb_writeb(blue, 0x3c9, cfb); ret = 0; } /* * Since this is only used for the first 16 colours, we * don't have to care about overflowing for regno >= 32 */ pseudo_val = regno << var->red.offset | regno << var->green.offset | regno << var->blue.offset; break; /* * True colour: * n rl * pixel --/--+--/--> red dac * | gl * +--/--> green dac * | bl * +--/--> blue dac * n = bpp, rl = red length, gl = green length, bl = blue length */ case FB_VISUAL_TRUECOLOR: pseudo_val = convert_bitfield(transp ^ 0xffff, &var->transp); pseudo_val |= convert_bitfield(red, &var->red); pseudo_val |= convert_bitfield(green, &var->green); pseudo_val |= convert_bitfield(blue, &var->blue); ret = 0; break; } /* * Now set our pseudo palette for the CFB16/24/32 drivers. */ if (regno < 16) ((u32 *)cfb->fb.pseudo_palette)[regno] = pseudo_val; return ret; } struct par_info { /* * Hardware */ u_char clock_mult; u_char clock_div; u_char extseqmisc; u_char co_pixfmt; u_char crtc_ofl; u_char crtc[19]; u_int width; u_int pitch; u_int fetch; /* * Other */ u_char ramdac; }; static const u_char crtc_idx[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18 }; static void cyber2000fb_write_ramdac_ctrl(struct cfb_info *cfb) { unsigned int i; unsigned int val = cfb->ramdac_ctrl | cfb->ramdac_powerdown; cyber2000fb_writeb(0x56, 0x3ce, cfb); i = cyber2000fb_readb(0x3cf, cfb); cyber2000fb_writeb(i | 4, 0x3cf, cfb); cyber2000fb_writeb(val, 0x3c6, cfb); cyber2000fb_writeb(i, 0x3cf, cfb); /* prevent card lock-up observed on x86 with CyberPro 2000 */ cyber2000fb_readb(0x3cf, cfb); } static void cyber2000fb_set_timing(struct cfb_info *cfb, struct par_info *hw) { u_int i; /* * Blank palette */ for (i = 0; i < NR_PALETTE; i++) { cyber2000fb_writeb(i, 0x3c8, cfb); cyber2000fb_writeb(0, 0x3c9, cfb); cyber2000fb_writeb(0, 0x3c9, cfb); cyber2000fb_writeb(0, 0x3c9, cfb); } cyber2000fb_writeb(0xef, 0x3c2, cfb); cyber2000_crtcw(0x11, 0x0b, cfb); cyber2000_attrw(0x11, 0x00, cfb); cyber2000_seqw(0x00, 0x01, cfb); cyber2000_seqw(0x01, 0x01, cfb); cyber2000_seqw(0x02, 0x0f, cfb); cyber2000_seqw(0x03, 0x00, cfb); cyber2000_seqw(0x04, 0x0e, cfb); cyber2000_seqw(0x00, 0x03, cfb); for (i = 0; i < sizeof(crtc_idx); i++) cyber2000_crtcw(crtc_idx[i], hw->crtc[i], cfb); for (i = 0x0a; i < 0x10; i++) cyber2000_crtcw(i, 0, cfb); cyber2000_grphw(EXT_CRT_VRTOFL, hw->crtc_ofl, cfb); cyber2000_grphw(0x00, 0x00, cfb); cyber2000_grphw(0x01, 0x00, cfb); cyber2000_grphw(0x02, 0x00, cfb); cyber2000_grphw(0x03, 0x00, cfb); cyber2000_grphw(0x04, 0x00, cfb); cyber2000_grphw(0x05, 0x60, cfb); cyber2000_grphw(0x06, 0x05, cfb); cyber2000_grphw(0x07, 0x0f, cfb); cyber2000_grphw(0x08, 0xff, cfb); /* Attribute controller registers */ for (i = 0; i < 16; i++) cyber2000_attrw(i, i, cfb); cyber2000_attrw(0x10, 0x01, cfb); cyber2000_attrw(0x11, 0x00, cfb); cyber2000_attrw(0x12, 0x0f, cfb); cyber2000_attrw(0x13, 0x00, cfb); cyber2000_attrw(0x14, 0x00, cfb); /* PLL registers */ spin_lock(&cfb->reg_b0_lock); cyber2000_grphw(EXT_DCLK_MULT, hw->clock_mult, cfb); cyber2000_grphw(EXT_DCLK_DIV, hw->clock_div, cfb); cyber2000_grphw(EXT_MCLK_MULT, cfb->mclk_mult, cfb); cyber2000_grphw(EXT_MCLK_DIV, cfb->mclk_div, cfb); cyber2000_grphw(0x90, 0x01, cfb); cyber2000_grphw(0xb9, 0x80, cfb); cyber2000_grphw(0xb9, 0x00, cfb); spin_unlock(&cfb->reg_b0_lock); cfb->ramdac_ctrl = hw->ramdac; cyber2000fb_write_ramdac_ctrl(cfb); cyber2000fb_writeb(0x20, 0x3c0, cfb); cyber2000fb_writeb(0xff, 0x3c6, cfb); cyber2000_grphw(0x14, hw->fetch, cfb); cyber2000_grphw(0x15, ((hw->fetch >> 8) & 0x03) | ((hw->pitch >> 4) & 0x30), cfb); cyber2000_grphw(EXT_SEQ_MISC, hw->extseqmisc, cfb); /* * Set up accelerator registers */ cyber2000fb_writew(hw->width, CO_REG_SRC_WIDTH, cfb); cyber2000fb_writew(hw->width, CO_REG_DEST_WIDTH, cfb); cyber2000fb_writeb(hw->co_pixfmt, CO_REG_PIXFMT, cfb); } static inline int cyber2000fb_update_start(struct cfb_info *cfb, struct fb_var_screeninfo *var) { u_int base = var->yoffset * var->xres_virtual + var->xoffset; base *= var->bits_per_pixel; /* * Convert to bytes and shift two extra bits because DAC * can only start on 4 byte aligned data. */ base >>= 5; if (base >= 1 << 20) return -EINVAL; cyber2000_grphw(0x10, base >> 16 | 0x10, cfb); cyber2000_crtcw(0x0c, base >> 8, cfb); cyber2000_crtcw(0x0d, base, cfb); return 0; } static int cyber2000fb_decode_crtc(struct par_info *hw, struct cfb_info *cfb, struct fb_var_screeninfo *var) { u_int Htotal, Hblankend, Hsyncend; u_int Vtotal, Vdispend, Vblankstart, Vblankend, Vsyncstart, Vsyncend; #define ENCODE_BIT(v, b1, m, b2) ((((v) >> (b1)) & (m)) << (b2)) hw->crtc[13] = hw->pitch; hw->crtc[17] = 0xe3; hw->crtc[14] = 0; hw->crtc[8] = 0; Htotal = var->xres + var->right_margin + var->hsync_len + var->left_margin; if (Htotal > 2080) return -EINVAL; hw->crtc[0] = (Htotal >> 3) - 5; hw->crtc[1] = (var->xres >> 3) - 1; hw->crtc[2] = var->xres >> 3; hw->crtc[4] = (var->xres + var->right_margin) >> 3; Hblankend = (Htotal - 4 * 8) >> 3; hw->crtc[3] = ENCODE_BIT(Hblankend, 0, 0x1f, 0) | ENCODE_BIT(1, 0, 0x01, 7); Hsyncend = (var->xres + var->right_margin + var->hsync_len) >> 3; hw->crtc[5] = ENCODE_BIT(Hsyncend, 0, 0x1f, 0) | ENCODE_BIT(Hblankend, 5, 0x01, 7); Vdispend = var->yres - 1; Vsyncstart = var->yres + var->lower_margin; Vsyncend = var->yres + var->lower_margin + var->vsync_len; Vtotal = var->yres + var->lower_margin + var->vsync_len + var->upper_margin - 2; if (Vtotal > 2047) return -EINVAL; Vblankstart = var->yres + 6; Vblankend = Vtotal - 10; hw->crtc[6] = Vtotal; hw->crtc[7] = ENCODE_BIT(Vtotal, 8, 0x01, 0) | ENCODE_BIT(Vdispend, 8, 0x01, 1) | ENCODE_BIT(Vsyncstart, 8, 0x01, 2) | ENCODE_BIT(Vblankstart, 8, 0x01, 3) | ENCODE_BIT(1, 0, 0x01, 4) | ENCODE_BIT(Vtotal, 9, 0x01, 5) | ENCODE_BIT(Vdispend, 9, 0x01, 6) | ENCODE_BIT(Vsyncstart, 9, 0x01, 7); hw->crtc[9] = ENCODE_BIT(0, 0, 0x1f, 0) | ENCODE_BIT(Vblankstart, 9, 0x01, 5) | ENCODE_BIT(1, 0, 0x01, 6); hw->crtc[10] = Vsyncstart; hw->crtc[11] = ENCODE_BIT(Vsyncend, 0, 0x0f, 0) | ENCODE_BIT(1, 0, 0x01, 7); hw->crtc[12] = Vdispend; hw->crtc[15] = Vblankstart; hw->crtc[16] = Vblankend; hw->crtc[18] = 0xff; /* * overflow - graphics reg 0x11 * 0=VTOTAL:10 1=VDEND:10 2=VRSTART:10 3=VBSTART:10 * 4=LINECOMP:10 5-IVIDEO 6=FIXCNT */ hw->crtc_ofl = ENCODE_BIT(Vtotal, 10, 0x01, 0) | ENCODE_BIT(Vdispend, 10, 0x01, 1) | ENCODE_BIT(Vsyncstart, 10, 0x01, 2) | ENCODE_BIT(Vblankstart, 10, 0x01, 3) | EXT_CRT_VRTOFL_LINECOMP10; /* woody: set the interlaced bit... */ /* FIXME: what about doublescan? */ if ((var->vmode & FB_VMODE_MASK) == FB_VMODE_INTERLACED) hw->crtc_ofl |= EXT_CRT_VRTOFL_INTERLACE; return 0; } /* * The following was discovered by a good monitor, bit twiddling, theorising * and but mostly luck. Strangely, it looks like everyone elses' PLL! * * Clock registers: * fclock = fpll / div2 * fpll = fref * mult / div1 * where: * fref = 14.318MHz (69842ps) * mult = reg0xb0.7:0 * div1 = (reg0xb1.5:0 + 1) * div2 = 2^(reg0xb1.7:6) * fpll should be between 115 and 260 MHz * (8696ps and 3846ps) */ static int cyber2000fb_decode_clock(struct par_info *hw, struct cfb_info *cfb, struct fb_var_screeninfo *var) { u_long pll_ps = var->pixclock; const u_long ref_ps = cfb->ref_ps; u_int div2, t_div1, best_div1, best_mult; int best_diff; int vco; /* * Step 1: * find div2 such that 115MHz < fpll < 260MHz * and 0 <= div2 < 4 */ for (div2 = 0; div2 < 4; div2++) { u_long new_pll; new_pll = pll_ps / cfb->divisors[div2]; if (8696 > new_pll && new_pll > 3846) { pll_ps = new_pll; break; } } if (div2 == 4) return -EINVAL; /* * Step 2: * Given pll_ps and ref_ps, find: * pll_ps * 0.995 < pll_ps_calc < pll_ps * 1.005 * where { 1 < best_div1 < 32, 1 < best_mult < 256 } * pll_ps_calc = best_div1 / (ref_ps * best_mult) */ best_diff = 0x7fffffff; best_mult = 2; best_div1 = 32; for (t_div1 = 2; t_div1 < 32; t_div1 += 1) { u_int rr, t_mult, t_pll_ps; int diff; /* * Find the multiplier for this divisor */ rr = ref_ps * t_div1; t_mult = (rr + pll_ps / 2) / pll_ps; /* * Is the multiplier within the correct range? */ if (t_mult > 256 || t_mult < 2) continue; /* * Calculate the actual clock period from this multiplier * and divisor, and estimate the error. */ t_pll_ps = (rr + t_mult / 2) / t_mult; diff = pll_ps - t_pll_ps; if (diff < 0) diff = -diff; if (diff < best_diff) { best_diff = diff; best_mult = t_mult; best_div1 = t_div1; } /* * If we hit an exact value, there is no point in continuing. */ if (diff == 0) break; } /* * Step 3: * combine values */ hw->clock_mult = best_mult - 1; hw->clock_div = div2 << 6 | (best_div1 - 1); vco = ref_ps * best_div1 / best_mult; if ((ref_ps == 40690) && (vco < 5556)) /* Set VFSEL when VCO > 180MHz (5.556 ps). */ hw->clock_div |= EXT_DCLK_DIV_VFSEL; return 0; } /* * Set the User Defined Part of the Display */ static int cyber2000fb_check_var(struct fb_var_screeninfo *var, struct fb_info *info) { struct cfb_info *cfb = container_of(info, struct cfb_info, fb); struct par_info hw; unsigned int mem; int err; var->transp.msb_right = 0; var->red.msb_right = 0; var->green.msb_right = 0; var->blue.msb_right = 0; var->transp.offset = 0; var->transp.length = 0; switch (var->bits_per_pixel) { case 8: /* PSEUDOCOLOUR, 256 */ var->red.offset = 0; var->red.length = 8; var->green.offset = 0; var->green.length = 8; var->blue.offset = 0; var->blue.length = 8; break; case 16:/* DIRECTCOLOUR, 64k or 32k */ switch (var->green.length) { case 6: /* RGB565, 64k */ var->red.offset = 11; var->red.length = 5; var->green.offset = 5; var->green.length = 6; var->blue.offset = 0; var->blue.length = 5; break; default: case 5: /* RGB555, 32k */ var->red.offset = 10; var->red.length = 5; var->green.offset = 5; var->green.length = 5; var->blue.offset = 0; var->blue.length = 5; break; case 4: /* RGB444, 4k + transparency? */ var->transp.offset = 12; var->transp.length = 4; var->red.offset = 8; var->red.length = 4; var->green.offset = 4; var->green.length = 4; var->blue.offset = 0; var->blue.length = 4; break; } break; case 24:/* TRUECOLOUR, 16m */ var->red.offset = 16; var->red.length = 8; var->green.offset = 8; var->green.length = 8; var->blue.offset = 0; var->blue.length = 8; break; case 32:/* TRUECOLOUR, 16m */ var->transp.offset = 24; var->transp.length = 8; var->red.offset = 16; var->red.length = 8; var->green.offset = 8; var->green.length = 8; var->blue.offset = 0; var->blue.length = 8; break; default: return -EINVAL; } mem = var->xres_virtual * var->yres_virtual * (var->bits_per_pixel / 8); if (mem > cfb->fb.fix.smem_len) var->yres_virtual = cfb->fb.fix.smem_len * 8 / (var->bits_per_pixel * var->xres_virtual); if (var->yres > var->yres_virtual) var->yres = var->yres_virtual; if (var->xres > var->xres_virtual) var->xres = var->xres_virtual; err = cyber2000fb_decode_clock(&hw, cfb, var); if (err) return err; err = cyber2000fb_decode_crtc(&hw, cfb, var); if (err) return err; return 0; } static int cyber2000fb_set_par(struct fb_info *info) { struct cfb_info *cfb = container_of(info, struct cfb_info, fb); struct fb_var_screeninfo *var = &cfb->fb.var; struct par_info hw; unsigned int mem; hw.width = var->xres_virtual; hw.ramdac = RAMDAC_VREFEN | RAMDAC_DAC8BIT; switch (var->bits_per_pixel) { case 8: hw.co_pixfmt = CO_PIXFMT_8BPP; hw.pitch = hw.width >> 3; hw.extseqmisc = EXT_SEQ_MISC_8; break; case 16: hw.co_pixfmt = CO_PIXFMT_16BPP; hw.pitch = hw.width >> 2; switch (var->green.length) { case 6: /* RGB565, 64k */ hw.extseqmisc = EXT_SEQ_MISC_16_RGB565; break; case 5: /* RGB555, 32k */ hw.extseqmisc = EXT_SEQ_MISC_16_RGB555; break; case 4: /* RGB444, 4k + transparency? */ hw.extseqmisc = EXT_SEQ_MISC_16_RGB444; break; default: BUG(); } break; case 24:/* TRUECOLOUR, 16m */ hw.co_pixfmt = CO_PIXFMT_24BPP; hw.width *= 3; hw.pitch = hw.width >> 3; hw.ramdac |= (RAMDAC_BYPASS | RAMDAC_RAMPWRDN); hw.extseqmisc = EXT_SEQ_MISC_24_RGB888; break; case 32:/* TRUECOLOUR, 16m */ hw.co_pixfmt = CO_PIXFMT_32BPP; hw.pitch = hw.width >> 1; hw.ramdac |= (RAMDAC_BYPASS | RAMDAC_RAMPWRDN); hw.extseqmisc = EXT_SEQ_MISC_32; break; default: BUG(); } /* * Sigh, this is absolutely disgusting, but caused by * the way the fbcon developers want to separate out * the "checking" and the "setting" of the video mode. * * If the mode is not suitable for the hardware here, * we can't prevent it being set by returning an error. * * In theory, since NetWinders contain just one VGA card, * we should never end up hitting this problem. */ BUG_ON(cyber2000fb_decode_clock(&hw, cfb, var) != 0); BUG_ON(cyber2000fb_decode_crtc(&hw, cfb, var) != 0); hw.width -= 1; hw.fetch = hw.pitch; if (!(cfb->mem_ctl2 & MEM_CTL2_64BIT)) hw.fetch <<= 1; hw.fetch += 1; cfb->fb.fix.line_length = var->xres_virtual * var->bits_per_pixel / 8; /* * Same here - if the size of the video mode exceeds the * available RAM, we can't prevent this mode being set. * * In theory, since NetWinders contain just one VGA card, * we should never end up hitting this problem. */ mem = cfb->fb.fix.line_length * var->yres_virtual; BUG_ON(mem > cfb->fb.fix.smem_len); /* * 8bpp displays are always pseudo colour. 16bpp and above * are direct colour or true colour, depending on whether * the RAMDAC palettes are bypassed. (Direct colour has * palettes, true colour does not.) */ if (var->bits_per_pixel == 8) cfb->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR; else if (hw.ramdac & RAMDAC_BYPASS) cfb->fb.fix.visual = FB_VISUAL_TRUECOLOR; else cfb->fb.fix.visual = FB_VISUAL_DIRECTCOLOR; cyber2000fb_set_timing(cfb, &hw); cyber2000fb_update_start(cfb, var); return 0; } /* * Pan or Wrap the Display */ static int cyber2000fb_pan_display(struct fb_var_screeninfo *var, struct fb_info *info) { struct cfb_info *cfb = container_of(info, struct cfb_info, fb); if (cyber2000fb_update_start(cfb, var)) return -EINVAL; cfb->fb.var.xoffset = var->xoffset; cfb->fb.var.yoffset = var->yoffset; if (var->vmode & FB_VMODE_YWRAP) { cfb->fb.var.vmode |= FB_VMODE_YWRAP; } else { cfb->fb.var.vmode &= ~FB_VMODE_YWRAP; } return 0; } /* * (Un)Blank the display. * * Blank the screen if blank_mode != 0, else unblank. If * blank == NULL then the caller blanks by setting the CLUT * (Color Look Up Table) to all black. Return 0 if blanking * succeeded, != 0 if un-/blanking failed due to e.g. a * video mode which doesn't support it. Implements VESA * suspend and powerdown modes on hardware that supports * disabling hsync/vsync: * blank_mode == 2: suspend vsync * blank_mode == 3: suspend hsync * blank_mode == 4: powerdown * * wms...Enable VESA DMPS compatible powerdown mode * run "setterm -powersave powerdown" to take advantage */ static int cyber2000fb_blank(int blank, struct fb_info *info) { struct cfb_info *cfb = container_of(info, struct cfb_info, fb); unsigned int sync = 0; int i; switch (blank) { case FB_BLANK_POWERDOWN: /* powerdown - both sync lines down */ sync = EXT_SYNC_CTL_VS_0 | EXT_SYNC_CTL_HS_0; break; case FB_BLANK_HSYNC_SUSPEND: /* hsync off */ sync = EXT_SYNC_CTL_VS_NORMAL | EXT_SYNC_CTL_HS_0; break; case FB_BLANK_VSYNC_SUSPEND: /* vsync off */ sync = EXT_SYNC_CTL_VS_0 | EXT_SYNC_CTL_HS_NORMAL; break; case FB_BLANK_NORMAL: /* soft blank */ default: /* unblank */ break; } cyber2000_grphw(EXT_SYNC_CTL, sync, cfb); if (blank <= 1) { /* turn on ramdacs */ cfb->ramdac_powerdown &= ~(RAMDAC_DACPWRDN | RAMDAC_BYPASS | RAMDAC_RAMPWRDN); cyber2000fb_write_ramdac_ctrl(cfb); } /* * Soft blank/unblank the display. */ if (blank) { /* soft blank */ for (i = 0; i < NR_PALETTE; i++) { cyber2000fb_writeb(i, 0x3c8, cfb); cyber2000fb_writeb(0, 0x3c9, cfb); cyber2000fb_writeb(0, 0x3c9, cfb); cyber2000fb_writeb(0, 0x3c9, cfb); } } else { /* unblank */ for (i = 0; i < NR_PALETTE; i++) { cyber2000fb_writeb(i, 0x3c8, cfb); cyber2000fb_writeb(cfb->palette[i].red, 0x3c9, cfb); cyber2000fb_writeb(cfb->palette[i].green, 0x3c9, cfb); cyber2000fb_writeb(cfb->palette[i].blue, 0x3c9, cfb); } } if (blank >= 2) { /* turn off ramdacs */ cfb->ramdac_powerdown |= RAMDAC_DACPWRDN | RAMDAC_BYPASS | RAMDAC_RAMPWRDN; cyber2000fb_write_ramdac_ctrl(cfb); } return 0; } static struct fb_ops cyber2000fb_ops = { .owner = THIS_MODULE, .fb_check_var = cyber2000fb_check_var, .fb_set_par = cyber2000fb_set_par, .fb_setcolreg = cyber2000fb_setcolreg, .fb_blank = cyber2000fb_blank, .fb_pan_display = cyber2000fb_pan_display, .fb_fillrect = cyber2000fb_fillrect, .fb_copyarea = cyber2000fb_copyarea, .fb_imageblit = cyber2000fb_imageblit, .fb_sync = cyber2000fb_sync, }; /* * This is the only "static" reference to the internal data structures * of this driver. It is here solely at the moment to support the other * CyberPro modules external to this driver. */ static struct cfb_info *int_cfb_info; /* * Enable access to the extended registers */ void cyber2000fb_enable_extregs(struct cfb_info *cfb) { cfb->func_use_count += 1; if (cfb->func_use_count == 1) { int old; old = cyber2000_grphr(EXT_FUNC_CTL, cfb); old |= EXT_FUNC_CTL_EXTREGENBL; cyber2000_grphw(EXT_FUNC_CTL, old, cfb); } } EXPORT_SYMBOL(cyber2000fb_enable_extregs); /* * Disable access to the extended registers */ void cyber2000fb_disable_extregs(struct cfb_info *cfb) { if (cfb->func_use_count == 1) { int old; old = cyber2000_grphr(EXT_FUNC_CTL, cfb); old &= ~EXT_FUNC_CTL_EXTREGENBL; cyber2000_grphw(EXT_FUNC_CTL, old, cfb); } if (cfb->func_use_count == 0) printk(KERN_ERR "disable_extregs: count = 0\n"); else cfb->func_use_count -= 1; } EXPORT_SYMBOL(cyber2000fb_disable_extregs); /* * Attach a capture/tv driver to the core CyberX0X0 driver. */ int cyber2000fb_attach(struct cyberpro_info *info, int idx) { if (int_cfb_info != NULL) { info->dev = int_cfb_info->fb.device; #ifdef CONFIG_FB_CYBER2000_I2C info->i2c = &int_cfb_info->i2c_adapter; #else info->i2c = NULL; #endif info->regs = int_cfb_info->regs; info->irq = int_cfb_info->irq; info->fb = int_cfb_info->fb.screen_base; info->fb_size = int_cfb_info->fb.fix.smem_len; info->info = int_cfb_info; strlcpy(info->dev_name, int_cfb_info->fb.fix.id, sizeof(info->dev_name)); } return int_cfb_info != NULL; } EXPORT_SYMBOL(cyber2000fb_attach); /* * Detach a capture/tv driver from the core CyberX0X0 driver. */ void cyber2000fb_detach(int idx) { } EXPORT_SYMBOL(cyber2000fb_detach); #ifdef CONFIG_FB_CYBER2000_DDC #define DDC_REG 0xb0 #define DDC_SCL_OUT (1 << 0) #define DDC_SDA_OUT (1 << 4) #define DDC_SCL_IN (1 << 2) #define DDC_SDA_IN (1 << 6) static void cyber2000fb_enable_ddc(struct cfb_info *cfb) { spin_lock(&cfb->reg_b0_lock); cyber2000fb_writew(0x1bf, 0x3ce, cfb); } static void cyber2000fb_disable_ddc(struct cfb_info *cfb) { cyber2000fb_writew(0x0bf, 0x3ce, cfb); spin_unlock(&cfb->reg_b0_lock); } static void cyber2000fb_ddc_setscl(void *data, int val) { struct cfb_info *cfb = data; unsigned char reg; cyber2000fb_enable_ddc(cfb); reg = cyber2000_grphr(DDC_REG, cfb); if (!val) /* bit is inverted */ reg |= DDC_SCL_OUT; else reg &= ~DDC_SCL_OUT; cyber2000_grphw(DDC_REG, reg, cfb); cyber2000fb_disable_ddc(cfb); } static void cyber2000fb_ddc_setsda(void *data, int val) { struct cfb_info *cfb = data; unsigned char reg; cyber2000fb_enable_ddc(cfb); reg = cyber2000_grphr(DDC_REG, cfb); if (!val) /* bit is inverted */ reg |= DDC_SDA_OUT; else reg &= ~DDC_SDA_OUT; cyber2000_grphw(DDC_REG, reg, cfb); cyber2000fb_disable_ddc(cfb); } static int cyber2000fb_ddc_getscl(void *data) { struct cfb_info *cfb = data; int retval; cyber2000fb_enable_ddc(cfb); retval = !!(cyber2000_grphr(DDC_REG, cfb) & DDC_SCL_IN); cyber2000fb_disable_ddc(cfb); return retval; } static int cyber2000fb_ddc_getsda(void *data) { struct cfb_info *cfb = data; int retval; cyber2000fb_enable_ddc(cfb); retval = !!(cyber2000_grphr(DDC_REG, cfb) & DDC_SDA_IN); cyber2000fb_disable_ddc(cfb); return retval; } static int cyber2000fb_setup_ddc_bus(struct cfb_info *cfb) { strlcpy(cfb->ddc_adapter.name, cfb->fb.fix.id, sizeof(cfb->ddc_adapter.name)); cfb->ddc_adapter.owner = THIS_MODULE; cfb->ddc_adapter.class = I2C_CLASS_DDC; cfb->ddc_adapter.algo_data = &cfb->ddc_algo; cfb->ddc_adapter.dev.parent = cfb->fb.device; cfb->ddc_algo.setsda = cyber2000fb_ddc_setsda; cfb->ddc_algo.setscl = cyber2000fb_ddc_setscl; cfb->ddc_algo.getsda = cyber2000fb_ddc_getsda; cfb->ddc_algo.getscl = cyber2000fb_ddc_getscl; cfb->ddc_algo.udelay = 10; cfb->ddc_algo.timeout = 20; cfb->ddc_algo.data = cfb; i2c_set_adapdata(&cfb->ddc_adapter, cfb); return i2c_bit_add_bus(&cfb->ddc_adapter); } #endif /* CONFIG_FB_CYBER2000_DDC */ #ifdef CONFIG_FB_CYBER2000_I2C static void cyber2000fb_i2c_setsda(void *data, int state) { struct cfb_info *cfb = data; unsigned int latch2; spin_lock(&cfb->reg_b0_lock); latch2 = cyber2000_grphr(EXT_LATCH2, cfb); latch2 &= EXT_LATCH2_I2C_CLKEN; if (state) latch2 |= EXT_LATCH2_I2C_DATEN; cyber2000_grphw(EXT_LATCH2, latch2, cfb); spin_unlock(&cfb->reg_b0_lock); } static void cyber2000fb_i2c_setscl(void *data, int state) { struct cfb_info *cfb = data; unsigned int latch2; spin_lock(&cfb->reg_b0_lock); latch2 = cyber2000_grphr(EXT_LATCH2, cfb); latch2 &= EXT_LATCH2_I2C_DATEN; if (state) latch2 |= EXT_LATCH2_I2C_CLKEN; cyber2000_grphw(EXT_LATCH2, latch2, cfb); spin_unlock(&cfb->reg_b0_lock); } static int cyber2000fb_i2c_getsda(void *data) { struct cfb_info *cfb = data; int ret; spin_lock(&cfb->reg_b0_lock); ret = !!(cyber2000_grphr(EXT_LATCH2, cfb) & EXT_LATCH2_I2C_DAT); spin_unlock(&cfb->reg_b0_lock); return ret; } static int cyber2000fb_i2c_getscl(void *data) { struct cfb_info *cfb = data; int ret; spin_lock(&cfb->reg_b0_lock); ret = !!(cyber2000_grphr(EXT_LATCH2, cfb) & EXT_LATCH2_I2C_CLK); spin_unlock(&cfb->reg_b0_lock); return ret; } static int cyber2000fb_i2c_register(struct cfb_info *cfb) { strlcpy(cfb->i2c_adapter.name, cfb->fb.fix.id, sizeof(cfb->i2c_adapter.name)); cfb->i2c_adapter.owner = THIS_MODULE; cfb->i2c_adapter.algo_data = &cfb->i2c_algo; cfb->i2c_adapter.dev.parent = cfb->fb.device; cfb->i2c_algo.setsda = cyber2000fb_i2c_setsda; cfb->i2c_algo.setscl = cyber2000fb_i2c_setscl; cfb->i2c_algo.getsda = cyber2000fb_i2c_getsda; cfb->i2c_algo.getscl = cyber2000fb_i2c_getscl; cfb->i2c_algo.udelay = 5; cfb->i2c_algo.timeout = msecs_to_jiffies(100); cfb->i2c_algo.data = cfb; return i2c_bit_add_bus(&cfb->i2c_adapter); } static void cyber2000fb_i2c_unregister(struct cfb_info *cfb) { i2c_del_adapter(&cfb->i2c_adapter); } #else #define cyber2000fb_i2c_register(cfb) (0) #define cyber2000fb_i2c_unregister(cfb) do { } while (0) #endif /* * These parameters give * 640x480, hsync 31.5kHz, vsync 60Hz */ static struct fb_videomode cyber2000fb_default_mode = { .refresh = 60, .xres = 640, .yres = 480, .pixclock = 39722, .left_margin = 56, .right_margin = 16, .upper_margin = 34, .lower_margin = 9, .hsync_len = 88, .vsync_len = 2, .sync = FB_SYNC_COMP_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT, .vmode = FB_VMODE_NONINTERLACED }; static char igs_regs[] = { EXT_CRT_IRQ, 0, EXT_CRT_TEST, 0, EXT_SYNC_CTL, 0, EXT_SEG_WRITE_PTR, 0, EXT_SEG_READ_PTR, 0, EXT_BIU_MISC, EXT_BIU_MISC_LIN_ENABLE | EXT_BIU_MISC_COP_ENABLE | EXT_BIU_MISC_COP_BFC, EXT_FUNC_CTL, 0, CURS_H_START, 0, CURS_H_START + 1, 0, CURS_H_PRESET, 0, CURS_V_START, 0, CURS_V_START + 1, 0, CURS_V_PRESET, 0, CURS_CTL, 0, EXT_ATTRIB_CTL, EXT_ATTRIB_CTL_EXT, EXT_OVERSCAN_RED, 0, EXT_OVERSCAN_GREEN, 0, EXT_OVERSCAN_BLUE, 0, /* some of these are questionable when we have a BIOS */ EXT_MEM_CTL0, EXT_MEM_CTL0_7CLK | EXT_MEM_CTL0_RAS_1 | EXT_MEM_CTL0_MULTCAS, EXT_HIDDEN_CTL1, 0x30, EXT_FIFO_CTL, 0x0b, EXT_FIFO_CTL + 1, 0x17, 0x76, 0x00, EXT_HIDDEN_CTL4, 0xc8 }; /* * Initialise the CyberPro hardware. On the CyberPro5XXXX, * ensure that we're using the correct PLL (5XXX's may be * programmed to use an additional set of PLLs.) */ static void cyberpro_init_hw(struct cfb_info *cfb) { int i; for (i = 0; i < sizeof(igs_regs); i += 2) cyber2000_grphw(igs_regs[i], igs_regs[i + 1], cfb); if (cfb->id == ID_CYBERPRO_5000) { unsigned char val; cyber2000fb_writeb(0xba, 0x3ce, cfb); val = cyber2000fb_readb(0x3cf, cfb) & 0x80; cyber2000fb_writeb(val, 0x3cf, cfb); } } static struct cfb_info *cyberpro_alloc_fb_info(unsigned int id, char *name) { struct cfb_info *cfb; cfb = kzalloc(sizeof(struct cfb_info), GFP_KERNEL); if (!cfb) return NULL; cfb->id = id; if (id == ID_CYBERPRO_5000) cfb->ref_ps = 40690; /* 24.576 MHz */ else cfb->ref_ps = 69842; /* 14.31818 MHz (69841?) */ cfb->divisors[0] = 1; cfb->divisors[1] = 2; cfb->divisors[2] = 4; if (id == ID_CYBERPRO_2000) cfb->divisors[3] = 8; else cfb->divisors[3] = 6; strcpy(cfb->fb.fix.id, name); cfb->fb.fix.type = FB_TYPE_PACKED_PIXELS; cfb->fb.fix.type_aux = 0; cfb->fb.fix.xpanstep = 0; cfb->fb.fix.ypanstep = 1; cfb->fb.fix.ywrapstep = 0; switch (id) { case ID_IGA_1682: cfb->fb.fix.accel = 0; break; case ID_CYBERPRO_2000: cfb->fb.fix.accel = FB_ACCEL_IGS_CYBER2000; break; case ID_CYBERPRO_2010: cfb->fb.fix.accel = FB_ACCEL_IGS_CYBER2010; break; case ID_CYBERPRO_5000: cfb->fb.fix.accel = FB_ACCEL_IGS_CYBER5000; break; } cfb->fb.var.nonstd = 0; cfb->fb.var.activate = FB_ACTIVATE_NOW; cfb->fb.var.height = -1; cfb->fb.var.width = -1; cfb->fb.var.accel_flags = FB_ACCELF_TEXT; cfb->fb.fbops = &cyber2000fb_ops; cfb->fb.flags = FBINFO_DEFAULT | FBINFO_HWACCEL_YPAN; cfb->fb.pseudo_palette = cfb->pseudo_palette; spin_lock_init(&cfb->reg_b0_lock); fb_alloc_cmap(&cfb->fb.cmap, NR_PALETTE, 0); return cfb; } static void cyberpro_free_fb_info(struct cfb_info *cfb) { if (cfb) { /* * Free the colourmap */ fb_alloc_cmap(&cfb->fb.cmap, 0, 0); kfree(cfb); } } /* * Parse Cyber2000fb options. Usage: * video=cyber2000:font:fontname */ #ifndef MODULE static int cyber2000fb_setup(char *options) { char *opt; if (!options || !*options) return 0; while ((opt = strsep(&options, ",")) != NULL) { if (!*opt) continue; if (strncmp(opt, "font:", 5) == 0) { static char default_font_storage[40]; strlcpy(default_font_storage, opt + 5, sizeof(default_font_storage)); default_font = default_font_storage; continue; } printk(KERN_ERR "CyberPro20x0: unknown parameter: %s\n", opt); } return 0; } #endif /* MODULE */ /* * The CyberPro chips can be placed on many different bus types. * This probe function is common to all bus types. The bus-specific * probe function is expected to have: * - enabled access to the linear memory region * - memory mapped access to the registers * - initialised mem_ctl1 and mem_ctl2 appropriately. */ static int cyberpro_common_probe(struct cfb_info *cfb) { u_long smem_size; u_int h_sync, v_sync; int err; cyberpro_init_hw(cfb); /* * Get the video RAM size and width from the VGA register. * This should have been already initialised by the BIOS, * but if it's garbage, claim default 1MB VRAM (woody) */ cfb->mem_ctl1 = cyber2000_grphr(EXT_MEM_CTL1, cfb); cfb->mem_ctl2 = cyber2000_grphr(EXT_MEM_CTL2, cfb); /* * Determine the size of the memory. */ switch (cfb->mem_ctl2 & MEM_CTL2_SIZE_MASK) { case MEM_CTL2_SIZE_4MB: smem_size = 0x00400000; break; case MEM_CTL2_SIZE_2MB: smem_size = 0x00200000; break; case MEM_CTL2_SIZE_1MB: smem_size = 0x00100000; break; default: smem_size = 0x00100000; break; } cfb->fb.fix.smem_len = smem_size; cfb->fb.fix.mmio_len = MMIO_SIZE; cfb->fb.screen_base = cfb->region; #ifdef CONFIG_FB_CYBER2000_DDC if (cyber2000fb_setup_ddc_bus(cfb) == 0) cfb->ddc_registered = true; #endif err = -EINVAL; if (!fb_find_mode(&cfb->fb.var, &cfb->fb, NULL, NULL, 0, &cyber2000fb_default_mode, 8)) { printk(KERN_ERR "%s: no valid mode found\n", cfb->fb.fix.id); goto failed; } cfb->fb.var.yres_virtual = cfb->fb.fix.smem_len * 8 / (cfb->fb.var.bits_per_pixel * cfb->fb.var.xres_virtual); if (cfb->fb.var.yres_virtual < cfb->fb.var.yres) cfb->fb.var.yres_virtual = cfb->fb.var.yres; /* fb_set_var(&cfb->fb.var, -1, &cfb->fb); */ /* * Calculate the hsync and vsync frequencies. Note that * we split the 1e12 constant up so that we can preserve * the precision and fit the results into 32-bit registers. * (1953125000 * 512 = 1e12) */ h_sync = 1953125000 / cfb->fb.var.pixclock; h_sync = h_sync * 512 / (cfb->fb.var.xres + cfb->fb.var.left_margin + cfb->fb.var.right_margin + cfb->fb.var.hsync_len); v_sync = h_sync / (cfb->fb.var.yres + cfb->fb.var.upper_margin + cfb->fb.var.lower_margin + cfb->fb.var.vsync_len); printk(KERN_INFO "%s: %dKiB VRAM, using %dx%d, %d.%03dkHz, %dHz\n", cfb->fb.fix.id, cfb->fb.fix.smem_len >> 10, cfb->fb.var.xres, cfb->fb.var.yres, h_sync / 1000, h_sync % 1000, v_sync); err = cyber2000fb_i2c_register(cfb); if (err) goto failed; err = register_framebuffer(&cfb->fb); if (err) cyber2000fb_i2c_unregister(cfb); failed: #ifdef CONFIG_FB_CYBER2000_DDC if (err && cfb->ddc_registered) i2c_del_adapter(&cfb->ddc_adapter); #endif return err; } static void cyberpro_common_remove(struct cfb_info *cfb) { unregister_framebuffer(&cfb->fb); #ifdef CONFIG_FB_CYBER2000_DDC if (cfb->ddc_registered) i2c_del_adapter(&cfb->ddc_adapter); #endif cyber2000fb_i2c_unregister(cfb); } static void cyberpro_common_resume(struct cfb_info *cfb) { cyberpro_init_hw(cfb); /* * Reprogram the MEM_CTL1 and MEM_CTL2 registers */ cyber2000_grphw(EXT_MEM_CTL1, cfb->mem_ctl1, cfb); cyber2000_grphw(EXT_MEM_CTL2, cfb->mem_ctl2, cfb); /* * Restore the old video mode and the palette. * We also need to tell fbcon to redraw the console. */ cyber2000fb_set_par(&cfb->fb); } /* * PCI specific support. */ #ifdef CONFIG_PCI /* * We need to wake up the CyberPro, and make sure its in linear memory * mode. Unfortunately, this is specific to the platform and card that * we are running on. * * On x86 and ARM, should we be initialising the CyberPro first via the * IO registers, and then the MMIO registers to catch all cases? Can we * end up in the situation where the chip is in MMIO mode, but not awake * on an x86 system? */ static int cyberpro_pci_enable_mmio(struct cfb_info *cfb) { unsigned char val; #if defined(__sparc_v9__) #error "You lose, consult DaveM." #elif defined(__sparc__) /* * SPARC does not have an "outb" instruction, so we generate * I/O cycles storing into a reserved memory space at * physical address 0x3000000 */ unsigned char __iomem *iop; iop = ioremap(0x3000000, 0x5000); if (iop == NULL) { printk(KERN_ERR "iga5000: cannot map I/O\n"); return -ENOMEM; } writeb(0x18, iop + 0x46e8); writeb(0x01, iop + 0x102); writeb(0x08, iop + 0x46e8); writeb(EXT_BIU_MISC, iop + 0x3ce); writeb(EXT_BIU_MISC_LIN_ENABLE, iop + 0x3cf); iounmap(iop); #else /* * Most other machine types are "normal", so * we use the standard IO-based wakeup. */ outb(0x18, 0x46e8); outb(0x01, 0x102); outb(0x08, 0x46e8); outb(EXT_BIU_MISC, 0x3ce); outb(EXT_BIU_MISC_LIN_ENABLE, 0x3cf); #endif /* * Allow the CyberPro to accept PCI burst accesses */ if (cfb->id == ID_CYBERPRO_2010) { printk(KERN_INFO "%s: NOT enabling PCI bursts\n", cfb->fb.fix.id); } else { val = cyber2000_grphr(EXT_BUS_CTL, cfb); if (!(val & EXT_BUS_CTL_PCIBURST_WRITE)) { printk(KERN_INFO "%s: enabling PCI bursts\n", cfb->fb.fix.id); val |= EXT_BUS_CTL_PCIBURST_WRITE; if (cfb->id == ID_CYBERPRO_5000) val |= EXT_BUS_CTL_PCIBURST_READ; cyber2000_grphw(EXT_BUS_CTL, val, cfb); } } return 0; } static int cyberpro_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) { struct cfb_info *cfb; char name[16]; int err; sprintf(name, "CyberPro%4X", id->device); err = pci_enable_device(dev); if (err) return err; err = -ENOMEM; cfb = cyberpro_alloc_fb_info(id->driver_data, name); if (!cfb) goto failed_release; err = pci_request_regions(dev, cfb->fb.fix.id); if (err) goto failed_regions; cfb->irq = dev->irq; cfb->region = pci_ioremap_bar(dev, 0); if (!cfb->region) { err = -ENOMEM; goto failed_ioremap; } cfb->regs = cfb->region + MMIO_OFFSET; cfb->fb.device = &dev->dev; cfb->fb.fix.mmio_start = pci_resource_start(dev, 0) + MMIO_OFFSET; cfb->fb.fix.smem_start = pci_resource_start(dev, 0); /* * Bring up the hardware. This is expected to enable access * to the linear memory region, and allow access to the memory * mapped registers. Also, mem_ctl1 and mem_ctl2 must be * initialised. */ err = cyberpro_pci_enable_mmio(cfb); if (err) goto failed; /* * Use MCLK from BIOS. FIXME: what about hotplug? */ cfb->mclk_mult = cyber2000_grphr(EXT_MCLK_MULT, cfb); cfb->mclk_div = cyber2000_grphr(EXT_MCLK_DIV, cfb); #ifdef __arm__ /* * MCLK on the NetWinder and the Shark is fixed at 75MHz */ if (machine_is_netwinder()) { cfb->mclk_mult = 0xdb; cfb->mclk_div = 0x54; } #endif err = cyberpro_common_probe(cfb); if (err) goto failed; /* * Our driver data */ pci_set_drvdata(dev, cfb); if (int_cfb_info == NULL) int_cfb_info = cfb; return 0; failed: iounmap(cfb->region); failed_ioremap: pci_release_regions(dev); failed_regions: cyberpro_free_fb_info(cfb); failed_release: return err; } static void cyberpro_pci_remove(struct pci_dev *dev) { struct cfb_info *cfb = pci_get_drvdata(dev); if (cfb) { cyberpro_common_remove(cfb); iounmap(cfb->region); cyberpro_free_fb_info(cfb); if (cfb == int_cfb_info) int_cfb_info = NULL; pci_release_regions(dev); } } static int cyberpro_pci_suspend(struct pci_dev *dev, pm_message_t state) { return 0; } /* * Re-initialise the CyberPro hardware */ static int cyberpro_pci_resume(struct pci_dev *dev) { struct cfb_info *cfb = pci_get_drvdata(dev); if (cfb) { cyberpro_pci_enable_mmio(cfb); cyberpro_common_resume(cfb); } return 0; } static struct pci_device_id cyberpro_pci_table[] = { /* Not yet * { PCI_VENDOR_ID_INTERG, PCI_DEVICE_ID_INTERG_1682, * PCI_ANY_ID, PCI_ANY_ID, 0, 0, ID_IGA_1682 }, */ { PCI_VENDOR_ID_INTERG, PCI_DEVICE_ID_INTERG_2000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, ID_CYBERPRO_2000 }, { PCI_VENDOR_ID_INTERG, PCI_DEVICE_ID_INTERG_2010, PCI_ANY_ID, PCI_ANY_ID, 0, 0, ID_CYBERPRO_2010 }, { PCI_VENDOR_ID_INTERG, PCI_DEVICE_ID_INTERG_5000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, ID_CYBERPRO_5000 }, { 0, } }; MODULE_DEVICE_TABLE(pci, cyberpro_pci_table); static struct pci_driver cyberpro_driver = { .name = "CyberPro", .probe = cyberpro_pci_probe, .remove = cyberpro_pci_remove, .suspend = cyberpro_pci_suspend, .resume = cyberpro_pci_resume, .id_table = cyberpro_pci_table }; #endif /* * I don't think we can use the "module_init" stuff here because * the fbcon stuff may not be initialised yet. Hence the #ifdef * around module_init. * * Tony: "module_init" is now required */ static int __init cyber2000fb_init(void) { int ret = -1, err; #ifndef MODULE char *option = NULL; if (fb_get_options("cyber2000fb", &option)) return -ENODEV; cyber2000fb_setup(option); #endif err = pci_register_driver(&cyberpro_driver); if (!err) ret = 0; return ret ? err : 0; } module_init(cyber2000fb_init); static void __exit cyberpro_exit(void) { pci_unregister_driver(&cyberpro_driver); } module_exit(cyberpro_exit); MODULE_AUTHOR("Russell King"); MODULE_DESCRIPTION("CyberPro 2000, 2010 and 5000 framebuffer driver"); MODULE_LICENSE("GPL");