/* * V9FS VFS extensions. * * Copyright (C) 2004 by Eric Van Hensbergen * Copyright (C) 2002 by Ron Minnich * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 * as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to: * Free Software Foundation * 51 Franklin Street, Fifth Floor * Boston, MA 02111-1301 USA * */ #ifndef FS_9P_V9FS_VFS_H #define FS_9P_V9FS_VFS_H /* plan9 semantics are that created files are implicitly opened. * But linux semantics are that you call create, then open. * the plan9 approach is superior as it provides an atomic * open. * we track the create fid here. When the file is opened, if fidopen is * non-zero, we use the fid and can skip some steps. * there may be a better way to do this, but I don't know it. * one BAD way is to clunk the fid on create, then open it again: * you lose the atomicity of file open */ /* special case: * unlink calls remove, which is an implicit clunk. So we have to track * that kind of thing so that we don't try to clunk a dead fid. */ #define P9_LOCK_TIMEOUT (30*HZ) extern struct file_system_type v9fs_fs_type; extern const struct address_space_operations v9fs_addr_operations; extern const struct file_operations v9fs_file_operations; extern const struct file_operations v9fs_file_operations_dotl; extern const struct file_operations v9fs_dir_operations; extern const struct file_operations v9fs_dir_operations_dotl; extern const struct dentry_operations v9fs_dentry_operations; extern const struct dentry_operations v9fs_cached_dentry_operations; extern const struct file_operations v9fs_cached_file_operations; extern const struct file_operations v9fs_cached_file_operations_dotl; extern const struct file_operations v9fs_mmap_file_operations; extern const struct file_operations v9fs_mmap_file_operations_dotl; extern struct kmem_cache *v9fs_inode_cache; struct inode *v9fs_alloc_inode(struct super_block *sb); void v9fs_destroy_inode(struct inode *inode); struct inode *v9fs_get_inode(struct super_block *sb, umode_t mode, dev_t); int v9fs_init_inode(struct v9fs_session_info *v9ses, struct inode *inode, umode_t mode, dev_t); void v9fs_evict_inode(struct inode *inode); ino_t v9fs_qid2ino(struct p9_qid *qid); void v9fs_stat2inode(struct p9_wstat *, struct inode *, struct super_block *); void v9fs_stat2inode_dotl(struct p9_stat_dotl *, struct inode *); int v9fs_dir_release(struct inode *inode, struct file *filp); int v9fs_file_open(struct inode *inode, struct file *file); void v9fs_inode2stat(struct inode *inode, struct p9_wstat *stat); int v9fs_uflags2omode(int uflags, int extended); void v9fs_blank_wstat(struct p9_wstat *wstat); int v9fs_vfs_setattr_dotl(struct dentry *, struct iattr *); int v9fs_file_fsync_dotl(struct file *filp, loff_t start, loff_t end, int datasync); int v9fs_refresh_inode(struct p9_fid *fid, struct inode *inode); int v9fs_refresh_inode_dotl(struct p9_fid *fid, struct inode *inode); static inline void v9fs_invalidate_inode_attr(struct inode *inode) { struct v9fs_inode *v9inode; v9inode = V9FS_I(inode); v9inode->cache_validity |= V9FS_INO_INVALID_ATTR; return; } int v9fs_open_to_dotl_flags(int flags); #endif 7fc6ee7c05a88e4996e8177f91b'/>
context:
space:
mode:
authorBenjamin Herrenschmidt <benh@kernel.crashing.org>2017-02-03 17:10:28 +1100
committerMichael Ellerman <mpe@ellerman.id.au>2017-02-08 23:36:29 +1100
commitd7df2443cd5f67fc6ee7c05a88e4996e8177f91b (patch)
tree098a7c0ca4fceb8a65cb1f693c9d71990388933d /fs/btrfs/relocation.c
parenta0615a16f7d0ceb5804d295203c302d496d8ee91 (diff)
powerpc/mm: Fix spurrious segfaults on radix with autonuma
When autonuma (Automatic NUMA balancing) marks a PTE inaccessible it clears all the protection bits but leave the PTE valid. With the Radix MMU, an attempt at executing from such a PTE will take a fault with bit 35 of SRR1 set "SRR1_ISI_N_OR_G". It is thus incorrect to treat all such faults as errors. We should pass them to handle_mm_fault() for autonuma to deal with. The case of pages that are really not executable is handled by the existing test for VM_EXEC further down. That leaves us with catching the kernel attempts at executing user pages. We can catch that earlier, even before we do find_vma. It is never valid on powerpc for the kernel to take an exec fault to begin with. So fold that test with the existing test for the kernel faulting on kernel addresses to bail out early. Fixes: 1d18ad026844 ("powerpc/mm: Detect instruction fetch denied and report") Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Balbir Singh <bsingharora@gmail.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Diffstat (limited to 'fs/btrfs/relocation.c')