/* * Copyright (C) 2005, 2006 * Avishay Traeger (avishay@gmail.com) * Copyright (C) 2008, 2009 * Boaz Harrosh <ooo@electrozaur.com> * * This file is part of exofs. * * exofs is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation. Since it is based on ext2, and the only * valid version of GPL for the Linux kernel is version 2, the only valid * version of GPL for exofs is version 2. * * exofs is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with exofs; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include <linux/slab.h> #include <linux/module.h> #include <asm/div64.h> #include <linux/lcm.h> #include "ore_raid.h" MODULE_AUTHOR("Boaz Harrosh <ooo@electrozaur.com>"); MODULE_DESCRIPTION("Objects Raid Engine ore.ko"); MODULE_LICENSE("GPL"); /* ore_verify_layout does a couple of things: * 1. Given a minimum number of needed parameters fixes up the rest of the * members to be operatonals for the ore. The needed parameters are those * that are defined by the pnfs-objects layout STD. * 2. Check to see if the current ore code actually supports these parameters * for example stripe_unit must be a multple of the system PAGE_SIZE, * and etc... * 3. Cache some havily used calculations that will be needed by users. */ enum { BIO_MAX_PAGES_KMALLOC = (PAGE_SIZE - sizeof(struct bio)) / sizeof(struct bio_vec),}; int ore_verify_layout(unsigned total_comps, struct ore_layout *layout) { u64 stripe_length; switch (layout->raid_algorithm) { case PNFS_OSD_RAID_0: layout->parity = 0; break; case PNFS_OSD_RAID_5: layout->parity = 1; break; case PNFS_OSD_RAID_PQ: layout->parity = 2; break; case PNFS_OSD_RAID_4: default: ORE_ERR("Only RAID_0/5/6 for now received-enum=%d\n", layout->raid_algorithm); return -EINVAL; } if (0 != (layout->stripe_unit & ~PAGE_MASK)) { ORE_ERR("Stripe Unit(0x%llx)" " must be Multples of PAGE_SIZE(0x%lx)\n", _LLU(layout->stripe_unit), PAGE_SIZE); return -EINVAL; } if (layout->group_width) { if (!layout->group_depth) { ORE_ERR("group_depth == 0 && group_width != 0\n"); return -EINVAL; } if (total_comps < (layout->group_width * layout->mirrors_p1)) { ORE_ERR("Data Map wrong, " "numdevs=%d < group_width=%d * mirrors=%d\n", total_comps, layout->group_width, layout->mirrors_p1); return -EINVAL; } layout->group_count = total_comps / layout->mirrors_p1 / layout->group_width; } else { if (layout->group_depth) { printk(KERN_NOTICE "Warning: group_depth ignored " "group_width == 0 && group_depth == %lld\n", _LLU(layout->group_depth)); } layout->group_width = total_comps / layout->mirrors_p1; layout->group_depth = -1; layout->group_count = 1; } stripe_length = (u64)layout->group_width * layout->stripe_unit; if (stripe_length >= (1ULL << 32)) { ORE_ERR("Stripe_length(0x%llx) >= 32bit is not supported\n", _LLU(stripe_length)); return -EINVAL; } layout->max_io_length = (BIO_MAX_PAGES_KMALLOC * PAGE_SIZE - layout->stripe_unit) * (layout->group_width - layout->parity); if (layout->parity) { unsigned stripe_length = (layout->group_width - layout->parity) * layout->stripe_unit; layout->max_io_length /= stripe_length; layout->max_io_length *= stripe_length; } ORE_DBGMSG("max_io_length=0x%lx\n", layout->max_io_length); return 0; } EXPORT_SYMBOL(ore_verify_layout); static u8 *_ios_cred(struct ore_io_state *ios, unsigned index) { return ios->oc->comps[index & ios->oc->single_comp].cred; } static struct osd_obj_id *_ios_obj(struct ore_io_state *ios, unsigned index) { return &ios->oc->comps[index & ios->oc->single_comp].obj; } static struct osd_dev *_ios_od(struct ore_io_state *ios, unsigned index) { ORE_DBGMSG2("oc->first_dev=%d oc->numdevs=%d i=%d oc->ods=%p\n", ios->oc->first_dev, ios->oc->numdevs, index, ios->oc->ods); return ore_comp_dev(ios->oc, index); } int _ore_get_io_state(struct ore_layout *layout, struct ore_components *oc, unsigned numdevs, unsigned sgs_per_dev, unsigned num_par_pages, struct ore_io_state **pios) { struct ore_io_state *ios; struct page **pages; struct osd_sg_entry *sgilist; struct __alloc_all_io_state { struct ore_io_state ios; struct ore_per_dev_state per_dev[numdevs]; union { struct osd_sg_entry sglist[sgs_per_dev * numdevs]; struct page *pages[num_par_pages]; }; } *_aios; if (likely(sizeof(*_aios) <= PAGE_SIZE)) { _aios = kzalloc(sizeof(*_aios), GFP_KERNEL); if (unlikely(!_aios)) { ORE_DBGMSG("Failed kzalloc bytes=%zd\n", sizeof(*_aios)); *pios = NULL; return -ENOMEM; } pages = num_par_pages ? _aios->pages : NULL; sgilist = sgs_per_dev ? _aios->sglist : NULL; ios = &_aios->ios; } else { struct __alloc_small_io_state { struct ore_io_state ios; struct ore_per_dev_state per_dev[numdevs]; } *_aio_small; union __extra_part { struct osd_sg_entry sglist[sgs_per_dev * numdevs]; struct page *pages[num_par_pages]; } *extra_part; _aio_small = kzalloc(sizeof(*_aio_small), GFP_KERNEL); if (unlikely(!_aio_small)) { ORE_DBGMSG("Failed alloc first part bytes=%zd\n", sizeof(*_aio_small)); *pios = NULL; return -ENOMEM; } extra_part = kzalloc(sizeof(*extra_part), GFP_KERNEL); if (unlikely(!extra_part)) { ORE_DBGMSG("Failed alloc second part bytes=%zd\n", sizeof(*extra_part)); kfree(_aio_small); *pios = NULL; return -ENOMEM; } pages = num_par_pages ? extra_part->pages : NULL; sgilist = sgs_per_dev ? extra_part->sglist : NULL; /* In this case the per_dev[0].sgilist holds the pointer to * be freed */ ios = &_aio_small->ios; ios->extra_part_alloc = true; } if (pages) { ios->parity_pages = pages; ios->max_par_pages = num_par_pages; } if (sgilist) { unsigned d; for (d = 0; d < numdevs; ++d) { ios->per_dev[d].sglist = sgilist; sgilist += sgs_per_dev; } ios->sgs_per_dev = sgs_per_dev; } ios->layout = layout; ios->oc = oc; *pios = ios; return 0; } /* Allocate an io_state for only a single group of devices * * If a user needs to call ore_read/write() this version must be used becase it * allocates extra stuff for striping and raid. * The ore might decide to only IO less then @length bytes do to alignmets * and constrains as follows: * - The IO cannot cross group boundary. * - In raid5/6 The end of the IO must align at end of a stripe eg. * (@offset + @length) % strip_size == 0. Or the complete range is within a * single stripe. * - Memory condition only permitted a shorter IO. (A user can use @length=~0 * And check the returned ios->length for max_io_size.) * * The caller must check returned ios->length (and/or ios->nr_pages) and * re-issue these pages that fall outside of ios->length */ int ore_get_rw_state(struct ore_layout *layout, struct ore_components *oc, bool is_reading, u64 offset, u64 length, struct ore_io_state **pios) { struct ore_io_state *ios; unsigned numdevs = layout->group_width * layout->mirrors_p1; unsigned sgs_per_dev = 0, max_par_pages = 0; int ret; if (layout->parity && length) { unsigned data_devs = layout->group_width - layout->parity; unsigned stripe_size = layout->stripe_unit * data_devs; unsigned pages_in_unit = layout->stripe_unit / PAGE_SIZE; u32 remainder; u64 num_stripes; u64 num_raid_units; num_stripes = div_u64_rem(length, stripe_size, &remainder); if (remainder) ++num_stripes; num_raid_units = num_stripes * layout->parity; if (is_reading) { /* For reads add per_dev sglist array */ /* TODO: Raid 6 we need twice more. Actually: * num_stripes / LCMdP(W,P); * if (W%P != 0) num_stripes *= parity; */ /* first/last seg is split */ num_raid_units += layout->group_width; sgs_per_dev = div_u64(num_raid_units, data_devs) + 2; } else { /* For Writes add parity pages array. */ max_par_pages = num_raid_units * pages_in_unit * sizeof(struct page *); } } ret = _ore_get_io_state(layout, oc, numdevs, sgs_per_dev, max_par_pages, pios); if (unlikely(ret)) return ret; ios = *pios; ios->reading = is_reading; ios->offset = offset; if (length) { ore_calc_stripe_info(layout, offset, length, &ios->si); ios->length = ios->si.length; ios->nr_pages = ((ios->offset & (PAGE_SIZE - 1)) + ios->length + PAGE_SIZE - 1) / PAGE_SIZE; if (layout->parity) _ore_post_alloc_raid_stuff(ios); } return 0; } EXPORT_SYMBOL(ore_get_rw_state); /* Allocate an io_state for all the devices in the comps array * * This version of io_state allocation is used mostly by create/remove * and trunc where we currently need all the devices. The only wastful * bit is the read/write_attributes with no IO. Those sites should * be converted to use ore_get_rw_state() with length=0 */ int ore_get_io_state(struct ore_layout *layout, struct ore_components *oc, struct ore_io_state **pios) { return _ore_get_io_state(layout, oc, oc->numdevs, 0, 0, pios); } EXPORT_SYMBOL(ore_get_io_state); void ore_put_io_state(struct ore_io_state *ios) { if (ios) { unsigned i; for (i = 0; i < ios->numdevs; i++) { struct ore_per_dev_state *per_dev = &ios->per_dev[i]; if (per_dev->or) osd_end_request(per_dev->or); if (per_dev->bio) bio_put(per_dev->bio); } _ore_free_raid_stuff(ios); kfree(ios); } } EXPORT_SYMBOL(ore_put_io_state); static void _sync_done(struct ore_io_state *ios, void *p) { struct completion *waiting = p; complete(waiting); } static void _last_io(struct kref *kref) { struct ore_io_state *ios = container_of( kref, struct ore_io_state, kref); ios->done(ios, ios->private); } static void _done_io(struct osd_request *or, void *p) { struct ore_io_state *ios = p; kref_put(&ios->kref, _last_io); } int ore_io_execute(struct ore_io_state *ios) { DECLARE_COMPLETION_ONSTACK(wait); bool sync = (ios->done == NULL); int i, ret; if (sync) { ios->done = _sync_done; ios->private = &wait; } for (i = 0; i < ios->numdevs; i++) { struct osd_request *or = ios->per_dev[i].or; if (unlikely(!or)) continue; ret = osd_finalize_request(or, 0, _ios_cred(ios, i), NULL); if (unlikely(ret)) { ORE_DBGMSG("Failed to osd_finalize_request() => %d\n", ret); return ret; } } kref_init(&ios->kref); for (i = 0; i < ios->numdevs; i++) { struct osd_request *or = ios->per_dev[i].or; if (unlikely(!or)) continue; kref_get(&ios->kref); osd_execute_request_async(or, _done_io, ios); } kref_put(&ios->kref, _last_io); ret = 0; if (sync) { wait_for_completion(&wait); ret = ore_check_io(ios, NULL); } return ret; } static void _clear_bio(struct bio *bio) { struct bio_vec *bv; unsigned i; bio_for_each_segment_all(bv, bio, i) { unsigned this_count = bv->bv_len; if (likely(PAGE_SIZE == this_count)) clear_highpage(bv->bv_page); else zero_user(bv->bv_page, bv->bv_offset, this_count); } } int ore_check_io(struct ore_io_state *ios, ore_on_dev_error on_dev_error) { enum osd_err_priority acumulated_osd_err = 0; int acumulated_lin_err = 0; int i; for (i = 0; i < ios->numdevs; i++) { struct osd_sense_info osi; struct ore_per_dev_state *per_dev = &ios->per_dev[i]; struct osd_request *or = per_dev->or; int ret; if (unlikely(!or)) continue; ret = osd_req_decode_sense(or, &osi); if (likely(!ret)) continue; if ((OSD_ERR_PRI_CLEAR_PAGES == osi.osd_err_pri) && per_dev->bio) { /* start read offset passed endof file. * Note: if we do not have bio it means read-attributes * In this case we should return error to caller. */ _clear_bio(per_dev->bio); ORE_DBGMSG("start read offset passed end of file " "offset=0x%llx, length=0x%llx\n", _LLU(per_dev->offset), _LLU(per_dev->length)); continue; /* we recovered */ } if (on_dev_error) { u64 residual = ios->reading ? or->in.residual : or->out.residual; u64 offset = (ios->offset + ios->length) - residual; unsigned dev = per_dev->dev - ios->oc->first_dev; struct ore_dev *od = ios->oc->ods[dev]; on_dev_error(ios, od, dev, osi.osd_err_pri, offset, residual); } if (osi.osd_err_pri >= acumulated_osd_err) { acumulated_osd_err = osi.osd_err_pri; acumulated_lin_err = ret; } } return acumulated_lin_err; } EXPORT_SYMBOL(ore_check_io); /* * L - logical offset into the file * * D - number of Data devices * D = group_width - parity * * U - The number of bytes in a stripe within a group * U = stripe_unit * D * * T - The number of bytes striped within a group of component objects * (before advancing to the next group) * T = U * group_depth * * S - The number of bytes striped across all component objects * before the pattern repeats * S = T * group_count * * M - The "major" (i.e., across all components) cycle number * M = L / S * * G - Counts the groups from the beginning of the major cycle * G = (L - (M * S)) / T [or (L % S) / T] * * H - The byte offset within the group * H = (L - (M * S)) % T [or (L % S) % T] * * N - The "minor" (i.e., across the group) stripe number * N = H / U * * C - The component index coresponding to L * * C = (H - (N * U)) / stripe_unit + G * D * [or (L % U) / stripe_unit + G * D] * * O - The component offset coresponding to L * O = L % stripe_unit + N * stripe_unit + M * group_depth * stripe_unit * * LCMdP – Parity cycle: Lowest Common Multiple of group_width, parity * divide by parity * LCMdP = lcm(group_width, parity) / parity * * R - The parity Rotation stripe * (Note parity cycle always starts at a group's boundary) * R = N % LCMdP * * I = the first parity device index * I = (group_width + group_width - R*parity - parity) % group_width * * Craid - The component index Rotated * Craid = (group_width + C - R*parity) % group_width * (We add the group_width to avoid negative numbers modulo math) */ void ore_calc_stripe_info(struct ore_layout *layout, u64 file_offset, u64 length, struct ore_striping_info *si) { u32 stripe_unit = layout->stripe_unit; u32 group_width = layout->group_width; u64 group_depth = layout->group_depth; u32 parity = layout->parity; u32 D = group_width - parity; u32 U = D * stripe_unit; u64 T = U * group_depth; u64 S = T * layout->group_count; u64 M = div64_u64(file_offset, S); /* G = (L - (M * S)) / T H = (L - (M * S)) % T */ u64 LmodS = file_offset - M * S; u32 G = div64_u64(LmodS, T); u64 H = LmodS - G * T; u32 N = div_u64(H, U); u32 Nlast; /* "H - (N * U)" is just "H % U" so it's bound to u32 */ u32 C = (u32)(H - (N * U)) / stripe_unit + G * group_width; u32 first_dev = C - C % group_width; div_u64_rem(file_offset, stripe_unit, &si->unit_off); si->obj_offset = si->unit_off + (N * stripe_unit) + (M * group_depth * stripe_unit); si->cur_comp = C - first_dev; si->cur_pg = si->unit_off / PAGE_SIZE; if (parity) { u32 LCMdP = lcm(group_width, parity) / parity; /* R = N % LCMdP; */ u32 RxP = (N % LCMdP) * parity; si->par_dev = (group_width + group_width - parity - RxP) % group_width + first_dev; si->dev = (group_width + group_width + C - RxP) % group_width + first_dev; si->bytes_in_stripe = U; si->first_stripe_start = M * S + G * T + N * U; } else { /* Make the math correct see _prepare_one_group */ si->par_dev = group_width; si->dev = C; } si->dev *= layout->mirrors_p1; si->par_dev *= layout->mirrors_p1; si->offset = file_offset; si->length = T - H; if (si->length > length) si->length = length; Nlast = div_u64(H + si->length + U - 1, U); si->maxdevUnits = Nlast - N; si->M = M; } EXPORT_SYMBOL(ore_calc_stripe_info); int _ore_add_stripe_unit(struct ore_io_state *ios, unsigned *cur_pg, unsigned pgbase, struct page **pages, struct ore_per_dev_state *per_dev, int cur_len) { unsigned pg = *cur_pg; struct request_queue *q = osd_request_queue(_ios_od(ios, per_dev->dev)); unsigned len = cur_len; int ret; if (per_dev->bio == NULL) { unsigned bio_size; if (!ios->reading) { bio_size = ios->si.maxdevUnits; } else { bio_size = (ios->si.maxdevUnits + 1) * (ios->layout->group_width - ios->layout->parity) / ios->layout->group_width; } bio_size *= (ios->layout->stripe_unit / PAGE_SIZE); per_dev->bio = bio_kmalloc(GFP_KERNEL, bio_size); if (unlikely(!per_dev->bio)) { ORE_DBGMSG("Failed to allocate BIO size=%u\n", bio_size); ret = -ENOMEM; goto out; } } while (cur_len > 0) { unsigned pglen = min_t(unsigned, PAGE_SIZE - pgbase, cur_len); unsigned added_len; cur_len -= pglen; added_len = bio_add_pc_page(q, per_dev->bio, pages[pg], pglen, pgbase); if (unlikely(pglen != added_len)) { /* If bi_vcnt == bi_max then this is a SW BUG */ ORE_DBGMSG("Failed bio_add_pc_page bi_vcnt=0x%x " "bi_max=0x%x BIO_MAX=0x%x cur_len=0x%x\n", per_dev->bio->bi_vcnt, per_dev->bio->bi_max_vecs, BIO_MAX_PAGES_KMALLOC, cur_len); ret = -ENOMEM; goto out; } _add_stripe_page(ios->sp2d, &ios->si, pages[pg]); pgbase = 0; ++pg; } BUG_ON(cur_len); per_dev->length += len; *cur_pg = pg; ret = 0; out: /* we fail the complete unit on an error eg don't advance * per_dev->length and cur_pg. This means that we might have a bigger * bio than the CDB requested length (per_dev->length). That's fine * only the oposite is fatal. */ return ret; } static int _add_parity_units(struct ore_io_state *ios, struct ore_striping_info *si, unsigned dev, unsigned first_dev, unsigned mirrors_p1, unsigned devs_in_group, unsigned cur_len) { unsigned do_parity; int ret = 0; for (do_parity = ios->layout->parity; do_parity; --do_parity) { struct ore_per_dev_state *per_dev; per_dev = &ios->per_dev[dev - first_dev]; if (!per_dev->length && !per_dev->offset) { /* Only/always the parity unit of the first * stripe will be empty. So this is a chance to * initialize the per_dev info. */ per_dev->dev = dev; per_dev->offset = si->obj_offset - si->unit_off; } ret = _ore_add_parity_unit(ios, si, per_dev, cur_len, do_parity == 1); if (unlikely(ret)) break; if (do_parity != 1) { dev = ((dev + mirrors_p1) % devs_in_group) + first_dev; si->cur_comp = (si->cur_comp + 1) % ios->layout->group_width; } } return ret; } static int _prepare_for_striping(struct ore_io_state *ios) { struct ore_striping_info *si = &ios->si; unsigned stripe_unit = ios->layout->stripe_unit; unsigned mirrors_p1 = ios->layout->mirrors_p1; unsigned group_width = ios->layout->group_width; unsigned devs_in_group = group_width * mirrors_p1; unsigned dev = si->dev; unsigned first_dev = dev - (dev % devs_in_group); unsigned cur_pg = ios->pages_consumed; u64 length = ios->length; int ret = 0; if (!ios->pages) { ios->numdevs = ios->layout->mirrors_p1; return 0; } BUG_ON(length > si->length); while (length) { struct ore_per_dev_state *per_dev = &ios->per_dev[dev - first_dev]; unsigned cur_len, page_off = 0; if (!per_dev->length && !per_dev->offset) { /* First time initialize the per_dev info. */ per_dev->dev = dev; if (dev == si->dev) { WARN_ON(dev == si->par_dev); per_dev->offset = si->obj_offset; cur_len = stripe_unit - si->unit_off; page_off = si->unit_off & ~PAGE_MASK; BUG_ON(page_off && (page_off != ios->pgbase)); } else { per_dev->offset = si->obj_offset - si->unit_off; cur_len = stripe_unit; } } else { cur_len = stripe_unit; } if (cur_len >= length) cur_len = length; ret = _ore_add_stripe_unit(ios, &cur_pg, page_off, ios->pages, per_dev, cur_len); if (unlikely(ret)) goto out; length -= cur_len; dev = ((dev + mirrors_p1) % devs_in_group) + first_dev; si->cur_comp = (si->cur_comp + 1) % group_width; if (unlikely((dev == si->par_dev) || (!length && ios->sp2d))) { if (!length && ios->sp2d) { /* If we are writing and this is the very last * stripe. then operate on parity dev. */ dev = si->par_dev; /* If last stripe operate on parity comp */ si->cur_comp = group_width - ios->layout->parity; } /* In writes cur_len just means if it's the * last one. See _ore_add_parity_unit. */ ret = _add_parity_units(ios, si, dev, first_dev, mirrors_p1, devs_in_group, ios->sp2d ? length : cur_len); if (unlikely(ret)) goto out; /* Rotate next par_dev backwards with wraping */ si->par_dev = (devs_in_group + si->par_dev - ios->layout->parity * mirrors_p1) % devs_in_group + first_dev; /* Next stripe, start fresh */ si->cur_comp = 0; si->cur_pg = 0; si->obj_offset += cur_len; si->unit_off = 0; } } out: ios->numdevs = devs_in_group; ios->pages_consumed = cur_pg; return ret; } int ore_create(struct ore_io_state *ios) { int i, ret; for (i = 0; i < ios->oc->numdevs; i++) { struct osd_request *or; or = osd_start_request(_ios_od(ios, i), GFP_KERNEL); if (unlikely(!or)) { ORE_ERR("%s: osd_start_request failed\n", __func__); ret = -ENOMEM; goto out; } ios->per_dev[i].or = or; ios->numdevs++; osd_req_create_object(or, _ios_obj(ios, i)); } ret = ore_io_execute(ios); out: return ret; } EXPORT_SYMBOL(ore_create); int ore_remove(struct ore_io_state *ios) { int i, ret; for (i = 0; i < ios->oc->numdevs; i++) { struct osd_request *or; or = osd_start_request(_ios_od(ios, i), GFP_KERNEL); if (unlikely(!or)) { ORE_ERR("%s: osd_start_request failed\n", __func__); ret = -ENOMEM; goto out; } ios->per_dev[i].or = or; ios->numdevs++; osd_req_remove_object(or, _ios_obj(ios, i)); } ret = ore_io_execute(ios); out: return ret; } EXPORT_SYMBOL(ore_remove); static int _write_mirror(struct ore_io_state *ios, int cur_comp) { struct ore_per_dev_state *master_dev = &ios->per_dev[cur_comp]; unsigned dev = ios->per_dev[cur_comp].dev; unsigned last_comp = cur_comp + ios->layout->mirrors_p1; int ret = 0; if (ios->pages && !master_dev->length) return 0; /* Just an empty slot */ for (; cur_comp < last_comp; ++cur_comp, ++dev) { struct ore_per_dev_state *per_dev = &ios->per_dev[cur_comp]; struct osd_request *or; or = osd_start_request(_ios_od(ios, dev), GFP_KERNEL); if (unlikely(!or)) { ORE_ERR("%s: osd_start_request failed\n", __func__); ret = -ENOMEM; goto out; } per_dev->or = or; if (ios->pages) { struct bio *bio; if (per_dev != master_dev) { bio = bio_clone_kmalloc(master_dev->bio, GFP_KERNEL); if (unlikely(!bio)) { ORE_DBGMSG( "Failed to allocate BIO size=%u\n", master_dev->bio->bi_max_vecs); ret = -ENOMEM; goto out; } bio->bi_bdev = NULL; bio->bi_next = NULL; per_dev->offset = master_dev->offset; per_dev->length = master_dev->length; per_dev->bio = bio; per_dev->dev = dev; } else { bio = master_dev->bio; /* FIXME: bio_set_dir() */ bio_set_op_attrs(bio, REQ_OP_WRITE, 0); } osd_req_write(or, _ios_obj(ios, cur_comp), per_dev->offset, bio, per_dev->length); ORE_DBGMSG("write(0x%llx) offset=0x%llx " "length=0x%llx dev=%d\n", _LLU(_ios_obj(ios, cur_comp)->id), _LLU(per_dev->offset), _LLU(per_dev->length), dev); } else if (ios->kern_buff) { per_dev->offset = ios->si.obj_offset; per_dev->dev = ios->si.dev + dev; /* no cross device without page array */ BUG_ON((ios->layout->group_width > 1) && (ios->si.unit_off + ios->length > ios->layout->stripe_unit)); ret = osd_req_write_kern(or, _ios_obj(ios, cur_comp), per_dev->offset, ios->kern_buff, ios->length); if (unlikely(ret)) goto out; ORE_DBGMSG2("write_kern(0x%llx) offset=0x%llx " "length=0x%llx dev=%d\n", _LLU(_ios_obj(ios, cur_comp)->id), _LLU(per_dev->offset), _LLU(ios->length), per_dev->dev); } else { osd_req_set_attributes(or, _ios_obj(ios, cur_comp)); ORE_DBGMSG2("obj(0x%llx) set_attributes=%d dev=%d\n", _LLU(_ios_obj(ios, cur_comp)->id), ios->out_attr_len, dev); } if (ios->out_attr) osd_req_add_set_attr_list(or, ios->out_attr, ios->out_attr_len); if (ios->in_attr) osd_req_add_get_attr_list(or, ios->in_attr, ios->in_attr_len); } out: return ret; } int ore_write(struct ore_io_state *ios) { int i; int ret; if (unlikely(ios->sp2d && !ios->r4w)) { /* A library is attempting a RAID-write without providing * a pages lock interface. */ WARN_ON_ONCE(1); return -ENOTSUPP; } ret = _prepare_for_striping(ios); if (unlikely(ret)) return ret; for (i = 0; i < ios->numdevs; i += ios->layout->mirrors_p1) { ret = _write_mirror(ios, i); if (unlikely(ret)) return ret; } ret = ore_io_execute(ios); return ret; } EXPORT_SYMBOL(ore_write); int _ore_read_mirror(struct ore_io_state *ios, unsigned cur_comp) { struct osd_request *or; struct ore_per_dev_state *per_dev = &ios->per_dev[cur_comp]; struct osd_obj_id *obj = _ios_obj(ios, cur_comp); unsigned first_dev = (unsigned)obj->id; if (ios->pages && !per_dev->length) return 0; /* Just an empty slot */ first_dev = per_dev->dev + first_dev % ios->layout->mirrors_p1; or = osd_start_request(_ios_od(ios, first_dev), GFP_KERNEL); if (unlikely(!or)) { ORE_ERR("%s: osd_start_request failed\n", __func__); return -ENOMEM; } per_dev->or = or; if (ios->pages) { if (per_dev->cur_sg) { /* finalize the last sg_entry */ _ore_add_sg_seg(per_dev, 0, false); if (unlikely(!per_dev->cur_sg)) return 0; /* Skip parity only device */ osd_req_read_sg(or, obj, per_dev->bio, per_dev->sglist, per_dev->cur_sg); } else { /* The no raid case */ osd_req_read(or, obj, per_dev->offset, per_dev->bio, per_dev->length); } ORE_DBGMSG("read(0x%llx) offset=0x%llx length=0x%llx" " dev=%d sg_len=%d\n", _LLU(obj->id), _LLU(per_dev->offset), _LLU(per_dev->length), first_dev, per_dev->cur_sg); } else { BUG_ON(ios->kern_buff); osd_req_get_attributes(or, obj); ORE_DBGMSG2("obj(0x%llx) get_attributes=%d dev=%d\n", _LLU(obj->id), ios->in_attr_len, first_dev); } if (ios->out_attr) osd_req_add_set_attr_list(or, ios->out_attr, ios->out_attr_len); if (ios->in_attr) osd_req_add_get_attr_list(or, ios->in_attr, ios->in_attr_len); return 0; } int ore_read(struct ore_io_state *ios) { int i; int ret; ret = _prepare_for_striping(ios); if (unlikely(ret)) return ret; for (i = 0; i < ios->numdevs; i += ios->layout->mirrors_p1) { ret = _ore_read_mirror(ios, i); if (unlikely(ret)) return ret; } ret = ore_io_execute(ios); return ret; } EXPORT_SYMBOL(ore_read); int extract_attr_from_ios(struct ore_io_state *ios, struct osd_attr *attr) { struct osd_attr cur_attr = {.attr_page = 0}; /* start with zeros */ void *iter = NULL; int nelem; do { nelem = 1; osd_req_decode_get_attr_list(ios->per_dev[0].or, &cur_attr, &nelem, &iter); if ((cur_attr.attr_page == attr->attr_page) && (cur_attr.attr_id == attr->attr_id)) { attr->len = cur_attr.len; attr->val_ptr = cur_attr.val_ptr; return 0; } } while (iter); return -EIO; } EXPORT_SYMBOL(extract_attr_from_ios); static int _truncate_mirrors(struct ore_io_state *ios, unsigned cur_comp, struct osd_attr *attr) { int last_comp = cur_comp + ios->layout->mirrors_p1; for (; cur_comp < last_comp; ++cur_comp) { struct ore_per_dev_state *per_dev = &ios->per_dev[cur_comp]; struct osd_request *or; or = osd_start_request(_ios_od(ios, cur_comp), GFP_KERNEL); if (unlikely(!or)) { ORE_ERR("%s: osd_start_request failed\n", __func__); return -ENOMEM; } per_dev->or = or; osd_req_set_attributes(or, _ios_obj(ios, cur_comp)); osd_req_add_set_attr_list(or, attr, 1); } return 0; } struct _trunc_info { struct ore_striping_info si; u64 prev_group_obj_off; u64 next_group_obj_off; unsigned first_group_dev; unsigned nex_group_dev; }; static void _calc_trunk_info(struct ore_layout *layout, u64 file_offset, struct _trunc_info *ti) { unsigned stripe_unit = layout->stripe_unit; ore_calc_stripe_info(layout, file_offset, 0, &ti->si); ti->prev_group_obj_off = ti->si.M * stripe_unit; ti->next_group_obj_off = ti->si.M ? (ti->si.M - 1) * stripe_unit : 0; ti->first_group_dev = ti->si.dev - (ti->si.dev % layout->group_width); ti->nex_group_dev = ti->first_group_dev + layout->group_width; } int ore_truncate(struct ore_layout *layout, struct ore_components *oc, u64 size) { struct ore_io_state *ios; struct exofs_trunc_attr { struct osd_attr attr; __be64 newsize; } *size_attrs; struct _trunc_info ti; int i, ret; ret = ore_get_io_state(layout, oc, &ios); if (unlikely(ret)) return ret; _calc_trunk_info(ios->layout, size, &ti); size_attrs = kcalloc(ios->oc->numdevs, sizeof(*size_attrs), GFP_KERNEL); if (unlikely(!size_attrs)) { ret = -ENOMEM; goto out; } ios->numdevs = ios->oc->numdevs; for (i = 0; i < ios->numdevs; ++i) { struct exofs_trunc_attr *size_attr = &size_attrs[i]; u64 obj_size; if (i < ti.first_group_dev) obj_size = ti.prev_group_obj_off; else if (i >= ti.nex_group_dev) obj_size = ti.next_group_obj_off; else if (i < ti.si.dev) /* dev within this group */ obj_size = ti.si.obj_offset + ios->layout->stripe_unit - ti.si.unit_off; else if (i == ti.si.dev) obj_size = ti.si.obj_offset; else /* i > ti.dev */ obj_size = ti.si.obj_offset - ti.si.unit_off; size_attr->newsize = cpu_to_be64(obj_size); size_attr->attr = g_attr_logical_length; size_attr->attr.val_ptr = &size_attr->newsize; ORE_DBGMSG2("trunc(0x%llx) obj_offset=0x%llx dev=%d\n", _LLU(oc->comps->obj.id), _LLU(obj_size), i); ret = _truncate_mirrors(ios, i * ios->layout->mirrors_p1, &size_attr->attr); if (unlikely(ret)) goto out; } ret = ore_io_execute(ios); out: kfree(size_attrs); ore_put_io_state(ios); return ret; } EXPORT_SYMBOL(ore_truncate); const struct osd_attr g_attr_logical_length = ATTR_DEF( OSD_APAGE_OBJECT_INFORMATION, OSD_ATTR_OI_LOGICAL_LENGTH, 8); EXPORT_SYMBOL(g_attr_logical_length);