/* * Copyright (c) 2016 Trond Myklebust * * I/O and data path helper functionality. */ #include #include #include #include #include #include #include "internal.h" /* Call with exclusively locked inode->i_rwsem */ static void nfs_block_o_direct(struct nfs_inode *nfsi, struct inode *inode) { if (test_bit(NFS_INO_ODIRECT, &nfsi->flags)) { clear_bit(NFS_INO_ODIRECT, &nfsi->flags); inode_dio_wait(inode); } } /** * nfs_start_io_read - declare the file is being used for buffered reads * @inode - file inode * * Declare that a buffered read operation is about to start, and ensure * that we block all direct I/O. * On exit, the function ensures that the NFS_INO_ODIRECT flag is unset, * and holds a shared lock on inode->i_rwsem to ensure that the flag * cannot be changed. * In practice, this means that buffered read operations are allowed to * execute in parallel, thanks to the shared lock, whereas direct I/O * operations need to wait to grab an exclusive lock in order to set * NFS_INO_ODIRECT. * Note that buffered writes and truncates both take a write lock on * inode->i_rwsem, meaning that those are serialised w.r.t. the reads. */ void nfs_start_io_read(struct inode *inode) { struct nfs_inode *nfsi = NFS_I(inode); /* Be an optimist! */ down_read(&inode->i_rwsem); if (test_bit(NFS_INO_ODIRECT, &nfsi->flags) == 0) return; up_read(&inode->i_rwsem); /* Slow path.... */ down_write(&inode->i_rwsem); nfs_block_o_direct(nfsi, inode); downgrade_write(&inode->i_rwsem); } /** * nfs_end_io_read - declare that the buffered read operation is done * @inode - file inode * * Declare that a buffered read operation is done, and release the shared * lock on inode->i_rwsem. */ void nfs_end_io_read(struct inode *inode) { up_read(&inode->i_rwsem); } /** * nfs_start_io_write - declare the file is being used for buffered writes * @inode - file inode * * Declare that a buffered read operation is about to start, and ensure * that we block all direct I/O. */ void nfs_start_io_write(struct inode *inode) { down_write(&inode->i_rwsem); nfs_block_o_direct(NFS_I(inode), inode); } /** * nfs_end_io_write - declare that the buffered write operation is done * @inode - file inode * * Declare that a buffered write operation is done, and release the * lock on inode->i_rwsem. */ void nfs_end_io_write(struct inode *inode) { up_write(&inode->i_rwsem); } /* Call with exclusively locked inode->i_rwsem */ static void nfs_block_buffered(struct nfs_inode *nfsi, struct inode *inode) { if (!test_bit(NFS_INO_ODIRECT, &nfsi->flags)) { set_bit(NFS_INO_ODIRECT, &nfsi->flags); nfs_wb_all(inode); } } /** * nfs_end_io_direct - declare the file is being used for direct i/o * @inode - file inode * * Declare that a direct I/O operation is about to start, and ensure * that we block all buffered I/O. * On exit, the function ensures that the NFS_INO_ODIRECT flag is set, * and holds a shared lock on inode->i_rwsem to ensure that the flag * cannot be changed. * In practice, this means that direct I/O operations are allowed to * execute in parallel, thanks to the shared lock, whereas buffered I/O * operations need to wait to grab an exclusive lock in order to clear * NFS_INO_ODIRECT. * Note that buffered writes and truncates both take a write lock on * inode->i_rwsem, meaning that those are serialised w.r.t. O_DIRECT. */ void nfs_start_io_direct(struct inode *inode) { struct nfs_inode *nfsi = NFS_I(inode); /* Be an optimist! */ down_read(&inode->i_rwsem); if (test_bit(NFS_INO_ODIRECT, &nfsi->flags) != 0) return; up_read(&inode->i_rwsem); /* Slow path.... */ down_write(&inode->i_rwsem); nfs_block_buffered(nfsi, inode); downgrade_write(&inode->i_rwsem); } /** * nfs_end_io_direct - declare that the direct i/o operation is done * @inode - file inode * * Declare that a direct I/O operation is done, and release the shared * lock on inode->i_rwsem. */ void nfs_end_io_direct(struct inode *inode) { up_read(&inode->i_rwsem); } remode:
authorIago Abal <mail@iagoabal.eu>2017-01-11 14:00:21 +0100
committerVinod Koul <vinod.koul@intel.com>2017-01-25 15:35:11 +0530
commit91539eb1fda2d530d3b268eef542c5414e54bf1a (patch)
tree960f5ca6342ad20837aff18aad6e8ecd7da32fd6 /include/dt-bindings/arm
parent6610d0edf6dc7ee97e46ab3a538a565c79d26199 (diff)
dmaengine: pl330: fix double lock
The static bug finder EBA (http://www.iagoabal.eu/eba/) reported the following double-lock bug: Double lock: 1. spin_lock_irqsave(pch->lock, flags) at pl330_free_chan_resources:2236; 2. call to function `pl330_release_channel' immediately after; 3. call to function `dma_pl330_rqcb' in line 1753; 4. spin_lock_irqsave(pch->lock, flags) at dma_pl330_rqcb:1505. I have fixed it as suggested by Marek Szyprowski. First, I have replaced `pch->lock' with `pl330->lock' in functions `pl330_alloc_chan_resources' and `pl330_free_chan_resources'. This avoids the double-lock by acquiring a different lock than `dma_pl330_rqcb'. NOTE that, as a result, `pl330_free_chan_resources' executes `list_splice_tail_init' on `pch->work_list' under lock `pl330->lock', whereas in the rest of the code `pch->work_list' is protected by `pch->lock'. I don't know if this may cause race conditions. Similarly `pch->cyclic' is written by `pl330_alloc_chan_resources' under `pl330->lock' but read by `pl330_tx_submit' under `pch->lock'. Second, I have removed locking from `pl330_request_channel' and `pl330_release_channel' functions. Function `pl330_request_channel' is only called from `pl330_alloc_chan_resources', so the lock is already held. Function `pl330_release_channel' is called from `pl330_free_chan_resources', which already holds the lock, and from `pl330_del'. Function `pl330_del' is called in an error path of `pl330_probe' and at the end of `pl330_remove', but I assume that there cannot be concurrent accesses to the protected data at those points. Signed-off-by: Iago Abal <mail@iagoabal.eu> Reviewed-by: Marek Szyprowski <m.szyprowski@samsung.com> Signed-off-by: Vinod Koul <vinod.koul@intel.com>
Diffstat (limited to 'include/dt-bindings/arm')