/* * linux/fs/ufs/swab.h * * Copyright (C) 1997, 1998 Francois-Rene Rideau * Copyright (C) 1998 Jakub Jelinek * Copyright (C) 2001 Christoph Hellwig */ #ifndef _UFS_SWAB_H #define _UFS_SWAB_H /* * Notes: * HERE WE ASSUME EITHER BIG OR LITTLE ENDIAN UFSes * in case there are ufs implementations that have strange bytesexes, * you'll need to modify code here as well as in ufs_super.c and ufs_fs.h * to support them. */ enum { BYTESEX_LE, BYTESEX_BE }; static inline u64 fs64_to_cpu(struct super_block *sbp, __fs64 n) { if (UFS_SB(sbp)->s_bytesex == BYTESEX_LE) return le64_to_cpu((__force __le64)n); else return be64_to_cpu((__force __be64)n); } static inline __fs64 cpu_to_fs64(struct super_block *sbp, u64 n) { if (UFS_SB(sbp)->s_bytesex == BYTESEX_LE) return (__force __fs64)cpu_to_le64(n); else return (__force __fs64)cpu_to_be64(n); } static inline u32 fs32_to_cpu(struct super_block *sbp, __fs32 n) { if (UFS_SB(sbp)->s_bytesex == BYTESEX_LE) return le32_to_cpu((__force __le32)n); else return be32_to_cpu((__force __be32)n); } static inline __fs32 cpu_to_fs32(struct super_block *sbp, u32 n) { if (UFS_SB(sbp)->s_bytesex == BYTESEX_LE) return (__force __fs32)cpu_to_le32(n); else return (__force __fs32)cpu_to_be32(n); } static inline void fs32_add(struct super_block *sbp, __fs32 *n, int d) { if (UFS_SB(sbp)->s_bytesex == BYTESEX_LE) le32_add_cpu((__le32 *)n, d); else be32_add_cpu((__be32 *)n, d); } static inline void fs32_sub(struct super_block *sbp, __fs32 *n, int d) { if (UFS_SB(sbp)->s_bytesex == BYTESEX_LE) le32_add_cpu((__le32 *)n, -d); else be32_add_cpu((__be32 *)n, -d); } static inline u16 fs16_to_cpu(struct super_block *sbp, __fs16 n) { if (UFS_SB(sbp)->s_bytesex == BYTESEX_LE) return le16_to_cpu((__force __le16)n); else return be16_to_cpu((__force __be16)n); } static inline __fs16 cpu_to_fs16(struct super_block *sbp, u16 n) { if (UFS_SB(sbp)->s_bytesex == BYTESEX_LE) return (__force __fs16)cpu_to_le16(n); else return (__force __fs16)cpu_to_be16(n); } static inline void fs16_add(struct super_block *sbp, __fs16 *n, int d) { if (UFS_SB(sbp)->s_bytesex == BYTESEX_LE) le16_add_cpu((__le16 *)n, d); else be16_add_cpu((__be16 *)n, d); } static inline void fs16_sub(struct super_block *sbp, __fs16 *n, int d) { if (UFS_SB(sbp)->s_bytesex == BYTESEX_LE) le16_add_cpu((__le16 *)n, -d); else be16_add_cpu((__be16 *)n, -d); } #endif /* _UFS_SWAB_H */ n>
diff options
context:
space:
mode:
authorDavid S. Miller <davem@davemloft.net>2017-01-30 14:28:22 -0800
committerDavid S. Miller <davem@davemloft.net>2017-01-30 14:28:22 -0800
commit54791b276b4000b307339f269d3bf7db877d536f (patch)
tree1c2616bd373ce5ea28aac2a53e32f5b5834901ce /net/ipv4/udp_tunnel.c
parent5d0e7705774dd412a465896d08d59a81a345c1e4 (diff)
parent047487241ff59374fded8c477f21453681f5995c (diff)
Merge branch 'sparc64-non-resumable-user-error-recovery'
Liam R. Howlett says: ==================== sparc64: Recover from userspace non-resumable PIO & MEM errors A non-resumable error from userspace is able to cause a kernel panic or trap loop due to the setup and handling of the queued traps once in the kernel. This patch series addresses both of these issues. The queues are fixed by simply zeroing the memory before use. PIO errors from userspace will result in a SIGBUS being sent to the user process. The MEM errors form userspace will result in a SIGKILL and also cause the offending pages to be claimed so they are no longer used in future tasks. SIGKILL is used to ensure that the process does not try to coredump and result in an attempt to read the memory again from within kernel space. Although there is a HV call to scrub the memory (mem_scrub), there is no easy way to guarantee that the real memory address(es) are not used by other tasks. Clearing the error with mem_scrub would zero the memory and cause the other processes to proceed with bad data. The handling of other non-resumable errors remain unchanged and will cause a panic. ==================== Signed-off-by: David S. Miller <davem@davemloft.net>
Diffstat (limited to 'net/ipv4/udp_tunnel.c')