/* * Copyright (c) 2000,2005 Silicon Graphics, Inc. * All Rights Reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it would be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #ifndef __XFS_EXTFREE_ITEM_H__ #define __XFS_EXTFREE_ITEM_H__ /* kernel only EFI/EFD definitions */ struct xfs_mount; struct kmem_zone; /* * Max number of extents in fast allocation path. */ #define XFS_EFI_MAX_FAST_EXTENTS 16 /* * Define EFI flag bits. Manipulated by set/clear/test_bit operators. */ #define XFS_EFI_RECOVERED 1 /* * This is the "extent free intention" log item. It is used to log the fact * that some extents need to be free. It is used in conjunction with the * "extent free done" log item described below. * * The EFI is reference counted so that it is not freed prior to both the EFI * and EFD being committed and unpinned. This ensures the EFI is inserted into * the AIL even in the event of out of order EFI/EFD processing. In other words, * an EFI is born with two references: * * 1.) an EFI held reference to track EFI AIL insertion * 2.) an EFD held reference to track EFD commit * * On allocation, both references are the responsibility of the caller. Once the * EFI is added to and dirtied in a transaction, ownership of reference one * transfers to the transaction. The reference is dropped once the EFI is * inserted to the AIL or in the event of failure along the way (e.g., commit * failure, log I/O error, etc.). Note that the caller remains responsible for * the EFD reference under all circumstances to this point. The caller has no * means to detect failure once the transaction is committed, however. * Therefore, an EFD is required after this point, even in the event of * unrelated failure. * * Once an EFD is allocated and dirtied in a transaction, reference two * transfers to the transaction. The EFD reference is dropped once it reaches * the unpin handler. Similar to the EFI, the reference also drops in the event * of commit failure or log I/O errors. Note that the EFD is not inserted in the * AIL, so at this point both the EFI and EFD are freed. */ typedef struct xfs_efi_log_item { xfs_log_item_t efi_item; atomic_t efi_refcount; atomic_t efi_next_extent; unsigned long efi_flags; /* misc flags */ xfs_efi_log_format_t efi_format; } xfs_efi_log_item_t; /* * This is the "extent free done" log item. It is used to log * the fact that some extents earlier mentioned in an efi item * have been freed. */ typedef struct xfs_efd_log_item { xfs_log_item_t efd_item; xfs_efi_log_item_t *efd_efip; uint efd_next_extent; xfs_efd_log_format_t efd_format; } xfs_efd_log_item_t; /* * Max number of extents in fast allocation path. */ #define XFS_EFD_MAX_FAST_EXTENTS 16 extern struct kmem_zone *xfs_efi_zone; extern struct kmem_zone *xfs_efd_zone; xfs_efi_log_item_t *xfs_efi_init(struct xfs_mount *, uint); xfs_efd_log_item_t *xfs_efd_init(struct xfs_mount *, xfs_efi_log_item_t *, uint); int xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt); void xfs_efi_item_free(xfs_efi_log_item_t *); void xfs_efi_release(struct xfs_efi_log_item *); int xfs_efi_recover(struct xfs_mount *mp, struct xfs_efi_log_item *efip); #endif /* __XFS_EXTFREE_ITEM_H__ */ alue='2'>2space:mode:
authorTony Lindgren <tony@atomide.com>2017-01-19 08:49:07 -0800
committerVinod Koul <vinod.koul@intel.com>2017-01-25 11:29:11 +0530
commitae4a3e028bb8b59e7cfeb0cc9ef03d885182ce8b (patch)
tree139fc7e29f97d6bb6c4dca2a97be2dc3f824bd51 /sound/ppc/snd_ps3.h
parent49def1853334396f948dcb4cedb9347abb318df5 (diff)
dmaengine: cppi41: Fix runtime PM timeouts with USB mass storage
Commit fdea2d09b997 ("dmaengine: cppi41: Add basic PM runtime support") added runtime PM support for cppi41, but had corner case issues. Some of the issues were fixed with commit 098de42ad670 ("dmaengine: cppi41: Fix unpaired pm runtime when only a USB hub is connected"). That fix however caused a new regression where we can get error -115 messages with USB on BeagleBone when connecting a USB mass storage device to a hub. This is because when connecting a USB mass storage device to a hub, the initial DMA transfers can take over 200ms to complete and cppi41 autosuspend delay times out. To fix the issue, we want to implement refcounting for chan_busy array that contains the active dma transfers. Increasing the autosuspend delay won't help as that the delay could be potentially seconds, and it's best to let the USB subsystem to deal with the timeouts on errors. The earlier attempt for runtime PM was buggy as the pm_runtime_get/put() calls could get unpaired easily as they did not follow the state of the chan_busy array as described in commit 098de42ad670 ("dmaengine: cppi41: Fix unpaired pm runtime when only a USB hub is connected". Let's fix the issue by adding pm_runtime_get() to where a new transfer is added to the chan_busy array, and calls to pm_runtime_put() where chan_busy array entry is cleared. This prevents any autosuspend timeouts from happening while dma transfers are active. Fixes: 098de42ad670 ("dmaengine: cppi41: Fix unpaired pm runtime when only a USB hub is connected") Fixes: fdea2d09b997 ("dmaengine: cppi41: Add basic PM runtime support") Cc: Andy Shevchenko <andy.shevchenko@gmail.com> Cc: Bin Liu <b-liu@ti.com> Cc: Grygorii Strashko <grygorii.strashko@ti.com> Cc: Kevin Hilman <khilman@baylibre.com> Cc: Patrick Titiano <ptitiano@baylibre.com> Cc: Sergei Shtylyov <sergei.shtylyov@cogentembedded.com> Signed-off-by: Tony Lindgren <tony@atomide.com> Tested-by: Bin Liu <b-liu@ti.com> Signed-off-by: Vinod Koul <vinod.koul@intel.com>
Diffstat (limited to 'sound/ppc/snd_ps3.h')