#ifndef _ASM_GENERIC_BITOPS_NON_ATOMIC_H_ #define _ASM_GENERIC_BITOPS_NON_ATOMIC_H_ #include /** * __set_bit - Set a bit in memory * @nr: the bit to set * @addr: the address to start counting from * * Unlike set_bit(), this function is non-atomic and may be reordered. * If it's called on the same region of memory simultaneously, the effect * may be that only one operation succeeds. */ static inline void __set_bit(int nr, volatile unsigned long *addr) { unsigned long mask = BIT_MASK(nr); unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr); *p |= mask; } static inline void __clear_bit(int nr, volatile unsigned long *addr) { unsigned long mask = BIT_MASK(nr); unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr); *p &= ~mask; } /** * __change_bit - Toggle a bit in memory * @nr: the bit to change * @addr: the address to start counting from * * Unlike change_bit(), this function is non-atomic and may be reordered. * If it's called on the same region of memory simultaneously, the effect * may be that only one operation succeeds. */ static inline void __change_bit(int nr, volatile unsigned long *addr) { unsigned long mask = BIT_MASK(nr); unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr); *p ^= mask; } /** * __test_and_set_bit - Set a bit and return its old value * @nr: Bit to set * @addr: Address to count from * * This operation is non-atomic and can be reordered. * If two examples of this operation race, one can appear to succeed * but actually fail. You must protect multiple accesses with a lock. */ static inline int __test_and_set_bit(int nr, volatile unsigned long *addr) { unsigned long mask = BIT_MASK(nr); unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr); unsigned long old = *p; *p = old | mask; return (old & mask) != 0; } /** * __test_and_clear_bit - Clear a bit and return its old value * @nr: Bit to clear * @addr: Address to count from * * This operation is non-atomic and can be reordered. * If two examples of this operation race, one can appear to succeed * but actually fail. You must protect multiple accesses with a lock. */ static inline int __test_and_clear_bit(int nr, volatile unsigned long *addr) { unsigned long mask = BIT_MASK(nr); unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr); unsigned long old = *p; *p = old & ~mask; return (old & mask) != 0; } /* WARNING: non atomic and it can be reordered! */ static inline int __test_and_change_bit(int nr, volatile unsigned long *addr) { unsigned long mask = BIT_MASK(nr); unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr); unsigned long old = *p; *p = old ^ mask; return (old & mask) != 0; } /** * test_bit - Determine whether a bit is set * @nr: bit number to test * @addr: Address to start counting from */ static inline int test_bit(int nr, const volatile unsigned long *addr) { return 1UL & (addr[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG-1))); } #endif /* _ASM_GENERIC_BITOPS_NON_ATOMIC_H_ */ 96'>sound/ak4xxx-adda.h
diff options
context:
space:
mode:
authorCharles Keepax <ckeepax@opensource.wolfsonmicro.com>2016-11-10 10:45:18 +0000
committerMark Brown <broonie@kernel.org>2016-11-10 17:28:32 +0000
commit85b037442e3f0e84296ab1010fd6b057eee18496 (patch)
treeb745f3f22cbd45af2039a004eb3f21d530afdc8b /include/sound/ak4xxx-adda.h
parent1001354ca34179f3db924eb66672442a173147dc (diff)
regulators: helpers: Fix handling of bypass_val_on in get_bypass_regmap
The handling of bypass_val_on that was added in regulator_get_bypass_regmap is done unconditionally however several drivers don't define a value for bypass_val_on. This results in those drivers reporting bypass being enabled when it is not. In regulator_set_bypass_regmap we use bypass_mask if bypass_val_on is zero. This patch adds similar handling in regulator_get_bypass_regmap. Fixes: commit dd1a571daee7 ("regulator: helpers: Ensure bypass register field matches ON value") Signed-off-by: Charles Keepax <ckeepax@opensource.wolfsonmicro.com> Signed-off-by: Mark Brown <broonie@kernel.org>
Diffstat (limited to 'include/sound/ak4xxx-adda.h')