#ifndef _ASM_GENERIC_CPUTIME_JIFFIES_H #define _ASM_GENERIC_CPUTIME_JIFFIES_H typedef unsigned long __nocast cputime_t; #define cmpxchg_cputime(ptr, old, new) cmpxchg(ptr, old, new) #define cputime_one_jiffy jiffies_to_cputime(1) #define cputime_to_jiffies(__ct) (__force unsigned long)(__ct) #define jiffies_to_cputime(__hz) (__force cputime_t)(__hz) typedef u64 __nocast cputime64_t; #define cputime64_to_jiffies64(__ct) (__force u64)(__ct) #define jiffies64_to_cputime64(__jif) (__force cputime64_t)(__jif) /* * Convert nanoseconds <-> cputime */ #define cputime_to_nsecs(__ct) \ jiffies_to_nsecs(cputime_to_jiffies(__ct)) #define nsecs_to_cputime64(__nsec) \ jiffies64_to_cputime64(nsecs_to_jiffies64(__nsec)) #define nsecs_to_cputime(__nsec) \ jiffies_to_cputime(nsecs_to_jiffies(__nsec)) /* * Convert cputime to microseconds and back. */ #define cputime_to_usecs(__ct) \ jiffies_to_usecs(cputime_to_jiffies(__ct)) #define usecs_to_cputime(__usec) \ jiffies_to_cputime(usecs_to_jiffies(__usec)) #define usecs_to_cputime64(__usec) \ jiffies64_to_cputime64(nsecs_to_jiffies64((__usec) * 1000)) /* * Convert cputime to seconds and back. */ #define cputime_to_secs(jif) (cputime_to_jiffies(jif) / HZ) #define secs_to_cputime(sec) jiffies_to_cputime((sec) * HZ) /* * Convert cputime to timespec and back. */ #define timespec_to_cputime(__val) \ jiffies_to_cputime(timespec_to_jiffies(__val)) #define cputime_to_timespec(__ct,__val) \ jiffies_to_timespec(cputime_to_jiffies(__ct),__val) /* * Convert cputime to timeval and back. */ #define timeval_to_cputime(__val) \ jiffies_to_cputime(timeval_to_jiffies(__val)) #define cputime_to_timeval(__ct,__val) \ jiffies_to_timeval(cputime_to_jiffies(__ct),__val) /* * Convert cputime to clock and back. */ #define cputime_to_clock_t(__ct) \ jiffies_to_clock_t(cputime_to_jiffies(__ct)) #define clock_t_to_cputime(__x) \ jiffies_to_cputime(clock_t_to_jiffies(__x)) /* * Convert cputime64 to clock. */ #define cputime64_to_clock_t(__ct) \ jiffies_64_to_clock_t(cputime64_to_jiffies64(__ct)) #endif inux/net-next.git/diff/include/dt-bindings/input/ti-drv260x.h?id=54791b276b4000b307339f269d3bf7db877d536f'>diff
path: root/include/dt-bindings/input/ti-drv260x.h
diff options
context:
space:
mode:
authorDavid S. Miller <davem@davemloft.net>2017-01-30 14:28:22 -0800
committerDavid S. Miller <davem@davemloft.net>2017-01-30 14:28:22 -0800
commit54791b276b4000b307339f269d3bf7db877d536f (patch)
tree1c2616bd373ce5ea28aac2a53e32f5b5834901ce /include/dt-bindings/input/ti-drv260x.h
parent5d0e7705774dd412a465896d08d59a81a345c1e4 (diff)
parent047487241ff59374fded8c477f21453681f5995c (diff)
Merge branch 'sparc64-non-resumable-user-error-recovery'
Liam R. Howlett says: ==================== sparc64: Recover from userspace non-resumable PIO & MEM errors A non-resumable error from userspace is able to cause a kernel panic or trap loop due to the setup and handling of the queued traps once in the kernel. This patch series addresses both of these issues. The queues are fixed by simply zeroing the memory before use. PIO errors from userspace will result in a SIGBUS being sent to the user process. The MEM errors form userspace will result in a SIGKILL and also cause the offending pages to be claimed so they are no longer used in future tasks. SIGKILL is used to ensure that the process does not try to coredump and result in an attempt to read the memory again from within kernel space. Although there is a HV call to scrub the memory (mem_scrub), there is no easy way to guarantee that the real memory address(es) are not used by other tasks. Clearing the error with mem_scrub would zero the memory and cause the other processes to proceed with bad data. The handling of other non-resumable errors remain unchanged and will cause a panic. ==================== Signed-off-by: David S. Miller <davem@davemloft.net>
Diffstat (limited to 'include/dt-bindings/input/ti-drv260x.h')