#ifndef _ASM_GENERIC_CPUTIME_JIFFIES_H #define _ASM_GENERIC_CPUTIME_JIFFIES_H typedef unsigned long __nocast cputime_t; #define cmpxchg_cputime(ptr, old, new) cmpxchg(ptr, old, new) #define cputime_one_jiffy jiffies_to_cputime(1) #define cputime_to_jiffies(__ct) (__force unsigned long)(__ct) #define jiffies_to_cputime(__hz) (__force cputime_t)(__hz) typedef u64 __nocast cputime64_t; #define cputime64_to_jiffies64(__ct) (__force u64)(__ct) #define jiffies64_to_cputime64(__jif) (__force cputime64_t)(__jif) /* * Convert nanoseconds <-> cputime */ #define cputime_to_nsecs(__ct) \ jiffies_to_nsecs(cputime_to_jiffies(__ct)) #define nsecs_to_cputime64(__nsec) \ jiffies64_to_cputime64(nsecs_to_jiffies64(__nsec)) #define nsecs_to_cputime(__nsec) \ jiffies_to_cputime(nsecs_to_jiffies(__nsec)) /* * Convert cputime to microseconds and back. */ #define cputime_to_usecs(__ct) \ jiffies_to_usecs(cputime_to_jiffies(__ct)) #define usecs_to_cputime(__usec) \ jiffies_to_cputime(usecs_to_jiffies(__usec)) #define usecs_to_cputime64(__usec) \ jiffies64_to_cputime64(nsecs_to_jiffies64((__usec) * 1000)) /* * Convert cputime to seconds and back. */ #define cputime_to_secs(jif) (cputime_to_jiffies(jif) / HZ) #define secs_to_cputime(sec) jiffies_to_cputime((sec) * HZ) /* * Convert cputime to timespec and back. */ #define timespec_to_cputime(__val) \ jiffies_to_cputime(timespec_to_jiffies(__val)) #define cputime_to_timespec(__ct,__val) \ jiffies_to_timespec(cputime_to_jiffies(__ct),__val) /* * Convert cputime to timeval and back. */ #define timeval_to_cputime(__val) \ jiffies_to_cputime(timeval_to_jiffies(__val)) #define cputime_to_timeval(__ct,__val) \ jiffies_to_timeval(cputime_to_jiffies(__ct),__val) /* * Convert cputime to clock and back. */ #define cputime_to_clock_t(__ct) \ jiffies_to_clock_t(cputime_to_jiffies(__ct)) #define clock_t_to_cputime(__x) \ jiffies_to_cputime(clock_t_to_jiffies(__x)) /* * Convert cputime64 to clock. */ #define cputime64_to_clock_t(__ct) \ jiffies_64_to_clock_t(cputime64_to_jiffies64(__ct)) #endif m_os_linux.h?id=d7df2443cd5f67fc6ee7c05a88e4996e8177f91b'>diff
path: root/include/drm/drm_os_linux.h
diff options
context:
space:
mode:
authorBenjamin Herrenschmidt <benh@kernel.crashing.org>2017-02-03 17:10:28 +1100
committerMichael Ellerman <mpe@ellerman.id.au>2017-02-08 23:36:29 +1100
commitd7df2443cd5f67fc6ee7c05a88e4996e8177f91b (patch)
tree098a7c0ca4fceb8a65cb1f693c9d71990388933d /include/drm/drm_os_linux.h
parenta0615a16f7d0ceb5804d295203c302d496d8ee91 (diff)
powerpc/mm: Fix spurrious segfaults on radix with autonuma
When autonuma (Automatic NUMA balancing) marks a PTE inaccessible it clears all the protection bits but leave the PTE valid. With the Radix MMU, an attempt at executing from such a PTE will take a fault with bit 35 of SRR1 set "SRR1_ISI_N_OR_G". It is thus incorrect to treat all such faults as errors. We should pass them to handle_mm_fault() for autonuma to deal with. The case of pages that are really not executable is handled by the existing test for VM_EXEC further down. That leaves us with catching the kernel attempts at executing user pages. We can catch that earlier, even before we do find_vma. It is never valid on powerpc for the kernel to take an exec fault to begin with. So fold that test with the existing test for the kernel faulting on kernel addresses to bail out early. Fixes: 1d18ad026844 ("powerpc/mm: Detect instruction fetch denied and report") Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Balbir Singh <bsingharora@gmail.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Diffstat (limited to 'include/drm/drm_os_linux.h')