#ifndef _ASM_GENERIC_DIV64_H #define _ASM_GENERIC_DIV64_H /* * Copyright (C) 2003 Bernardo Innocenti * Based on former asm-ppc/div64.h and asm-m68knommu/div64.h * * Optimization for constant divisors on 32-bit machines: * Copyright (C) 2006-2015 Nicolas Pitre * * The semantics of do_div() are: * * uint32_t do_div(uint64_t *n, uint32_t base) * { * uint32_t remainder = *n % base; * *n = *n / base; * return remainder; * } * * NOTE: macro parameter n is evaluated multiple times, * beware of side effects! */ #include #include #if BITS_PER_LONG == 64 # define do_div(n,base) ({ \ uint32_t __base = (base); \ uint32_t __rem; \ __rem = ((uint64_t)(n)) % __base; \ (n) = ((uint64_t)(n)) / __base; \ __rem; \ }) #elif BITS_PER_LONG == 32 #include /* * If the divisor happens to be constant, we determine the appropriate * inverse at compile time to turn the division into a few inline * multiplications which ought to be much faster. And yet only if compiling * with a sufficiently recent gcc version to perform proper 64-bit constant * propagation. * * (It is unfortunate that gcc doesn't perform all this internally.) */ #ifndef __div64_const32_is_OK #define __div64_const32_is_OK (__GNUC__ >= 4) #endif #define __div64_const32(n, ___b) \ ({ \ /* \ * Multiplication by reciprocal of b: n / b = n * (p / b) / p \ * \ * We rely on the fact that most of this code gets optimized \ * away at compile time due to constant propagation and only \ * a few multiplication instructions should remain. \ * Hence this monstrous macro (static inline doesn't always \ * do the trick here). \ */ \ uint64_t ___res, ___x, ___t, ___m, ___n = (n); \ uint32_t ___p, ___bias; \ \ /* determine MSB of b */ \ ___p = 1 << ilog2(___b); \ \ /* compute m = ((p << 64) + b - 1) / b */ \ ___m = (~0ULL / ___b) * ___p; \ ___m += (((~0ULL % ___b + 1) * ___p) + ___b - 1) / ___b; \ \ /* one less than the dividend with highest result */ \ ___x = ~0ULL / ___b * ___b - 1; \ \ /* test our ___m with res = m * x / (p << 64) */ \ ___res = ((___m & 0xffffffff) * (___x & 0xffffffff)) >> 32; \ ___t = ___res += (___m & 0xffffffff) * (___x >> 32); \ ___res += (___x & 0xffffffff) * (___m >> 32); \ ___t = (___res < ___t) ? (1ULL << 32) : 0; \ ___res = (___res >> 32) + ___t; \ ___res += (___m >> 32) * (___x >> 32); \ ___res /= ___p; \ \ /* Now sanitize and optimize what we've got. */ \ if (~0ULL % (___b / (___b & -___b)) == 0) { \ /* special case, can be simplified to ... */ \ ___n /= (___b & -___b); \ ___m = ~0ULL / (___b / (___b & -___b)); \ ___p = 1; \ ___bias = 1; \ } else if (___res != ___x / ___b) { \ /* \ * We can't get away without a bias to compensate \ * for bit truncation errors. To avoid it we'd need an \ * additional bit to represent m which would overflow \ * a 64-bit variable. \ * \ * Instead we do m = p / b and n / b = (n * m + m) / p. \ */ \ ___bias = 1; \ /* Compute m = (p << 64) / b */ \ ___m = (~0ULL / ___b) * ___p; \ ___m += ((~0ULL % ___b + 1) * ___p) / ___b; \ } else { \ /* \ * Reduce m / p, and try to clear bit 31 of m when \ * possible, otherwise that'll need extra overflow \ * handling later. \ */ \ uint32_t ___bits = -(___m & -___m); \ ___bits |= ___m >> 32; \ ___bits = (~___bits) << 1; \ /* \ * If ___bits == 0 then setting bit 31 is unavoidable. \ * Simply apply the maximum possible reduction in that \ * case. Otherwise the MSB of ___bits indicates the \ * best reduction we should apply. \ */ \ if (!___bits) { \ ___p /= (___m & -___m); \ ___m /= (___m & -___m); \ } else { \ ___p >>= ilog2(___bits); \ ___m >>= ilog2(___bits); \ } \ /* No bias needed. */ \ ___bias = 0; \ } \ \ /* \ * Now we have a combination of 2 conditions: \ * \ * 1) whether or not we need to apply a bias, and \ * \ * 2) whether or not there might be an overflow in the cross \ * product determined by (___m & ((1 << 63) | (1 << 31))). \ * \ * Select the best way to do (m_bias + m * n) / (1 << 64). \ * From now on there will be actual runtime code generated. \ */ \ ___res = __arch_xprod_64(___m, ___n, ___bias); \ \ ___res /= ___p; \ }) #ifndef __arch_xprod_64 /* * Default C implementation for __arch_xprod_64() * * Prototype: uint64_t __arch_xprod_64(const uint64_t m, uint64_t n, bool bias) * Semantic: retval = ((bias ? m : 0) + m * n) >> 64 * * The product is a 128-bit value, scaled down to 64 bits. * Assuming constant propagation to optimize away unused conditional code. * Architectures may provide their own optimized assembly implementation. */ static inline uint64_t __arch_xprod_64(const uint64_t m, uint64_t n, bool bias) { uint32_t m_lo = m; uint32_t m_hi = m >> 32; uint32_t n_lo = n; uint32_t n_hi = n >> 32; uint64_t res, tmp; if (!bias) { res = ((uint64_t)m_lo * n_lo) >> 32; } else if (!(m & ((1ULL << 63) | (1ULL << 31)))) { /* there can't be any overflow here */ res = (m + (uint64_t)m_lo * n_lo) >> 32; } else { res = m + (uint64_t)m_lo * n_lo; tmp = (res < m) ? (1ULL << 32) : 0; res = (res >> 32) + tmp; } if (!(m & ((1ULL << 63) | (1ULL << 31)))) { /* there can't be any overflow here */ res += (uint64_t)m_lo * n_hi; res += (uint64_t)m_hi * n_lo; res >>= 32; } else { tmp = res += (uint64_t)m_lo * n_hi; res += (uint64_t)m_hi * n_lo; tmp = (res < tmp) ? (1ULL << 32) : 0; res = (res >> 32) + tmp; } res += (uint64_t)m_hi * n_hi; return res; } #endif #ifndef __div64_32 extern uint32_t __div64_32(uint64_t *dividend, uint32_t divisor); #endif /* The unnecessary pointer compare is there * to check for type safety (n must be 64bit) */ # define do_div(n,base) ({ \ uint32_t __base = (base); \ uint32_t __rem; \ (void)(((typeof((n)) *)0) == ((uint64_t *)0)); \ if (__builtin_constant_p(__base) && \ is_power_of_2(__base)) { \ __rem = (n) & (__base - 1); \ (n) >>= ilog2(__base); \ } else if (__div64_const32_is_OK && \ __builtin_constant_p(__base) && \ __base != 0) { \ uint32_t __res_lo, __n_lo = (n); \ (n) = __div64_const32(n, __base); \ /* the remainder can be computed with 32-bit regs */ \ __res_lo = (n); \ __rem = __n_lo - __res_lo * __base; \ } else if (likely(((n) >> 32) == 0)) { \ __rem = (uint32_t)(n) % __base; \ (n) = (uint32_t)(n) / __base; \ } else \ __rem = __div64_32(&(n), __base); \ __rem; \ }) #else /* BITS_PER_LONG == ?? */ # error do_div() does not yet support the C64 #endif /* BITS_PER_LONG */ #endif /* _ASM_GENERIC_DIV64_H */ cb/0x4f0 [i915] drm_atomic_commit+0x4b/0x50 [drm] restore_fbdev_mode+0x14c/0x2a0 [drm_kms_helper] drm_fb_helper_restore_fbdev_mode_unlocked+0x34/0x80 [drm_kms_helper] drm_fb_helper_set_par+0x2d/0x60 [drm_kms_helper] intel_fbdev_set_par+0x18/0x70 [i915] fb_set_var+0x236/0x460 fbcon_blank+0x30f/0x350 do_unblank_screen+0xd2/0x1a0 vt_ioctl+0x507/0x12a0 tty_ioctl+0x355/0xc30 do_vfs_ioctl+0xa3/0x5e0 SyS_ioctl+0x79/0x90 entry_SYSCALL_64_fastpath+0x13/0x94 - i915 unpin_work workqueue: intel_unpin_work_fn+0x58/0x140 [i915] process_one_work+0x1f1/0x480 worker_thread+0x48/0x4d0 kthread+0x101/0x140 and this patch purely papers over the issue by adding a NULL pointer check and a WARN_ON_ONCE() to avoid the oops that would then generally make the machine unresponsive. Other callers of i915_gem_object_to_ggtt() seem to also check for the returned pointer being NULL and warn about it, so this clearly has happened before in other places. [ Reported it originally to the i915 developers on Jan 8, applying the ugly workaround on my own now after triggering the problem for the second time with no feedback. This is likely to be the same bug reported as https://bugs.freedesktop.org/show_bug.cgi?id=98829 https://bugs.freedesktop.org/show_bug.cgi?id=99134 which has a patch for the underlying problem, but it hasn't gotten to me, so I'm applying the workaround. ] Cc: Daniel Vetter <daniel.vetter@intel.com> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Imre Deak <imre.deak@intel.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'include/dt-bindings/pinctrl/qcom,pmic-mpp.h')