#ifndef __ASM_GENERIC_UACCESS_H #define __ASM_GENERIC_UACCESS_H /* * User space memory access functions, these should work * on any machine that has kernel and user data in the same * address space, e.g. all NOMMU machines. */ #include #include #include #define MAKE_MM_SEG(s) ((mm_segment_t) { (s) }) #ifndef KERNEL_DS #define KERNEL_DS MAKE_MM_SEG(~0UL) #endif #ifndef USER_DS #define USER_DS MAKE_MM_SEG(TASK_SIZE - 1) #endif #ifndef get_fs #define get_ds() (KERNEL_DS) #define get_fs() (current_thread_info()->addr_limit) static inline void set_fs(mm_segment_t fs) { current_thread_info()->addr_limit = fs; } #endif #ifndef segment_eq #define segment_eq(a, b) ((a).seg == (b).seg) #endif #define VERIFY_READ 0 #define VERIFY_WRITE 1 #define access_ok(type, addr, size) __access_ok((unsigned long)(addr),(size)) /* * The architecture should really override this if possible, at least * doing a check on the get_fs() */ #ifndef __access_ok static inline int __access_ok(unsigned long addr, unsigned long size) { return 1; } #endif /* * The exception table consists of pairs of addresses: the first is the * address of an instruction that is allowed to fault, and the second is * the address at which the program should continue. No registers are * modified, so it is entirely up to the continuation code to figure out * what to do. * * All the routines below use bits of fixup code that are out of line * with the main instruction path. This means when everything is well, * we don't even have to jump over them. Further, they do not intrude * on our cache or tlb entries. */ struct exception_table_entry { unsigned long insn, fixup; }; /* * architectures with an MMU should override these two */ #ifndef __copy_from_user static inline __must_check long __copy_from_user(void *to, const void __user * from, unsigned long n) { if (__builtin_constant_p(n)) { switch(n) { case 1: *(u8 *)to = *(u8 __force *)from; return 0; case 2: *(u16 *)to = *(u16 __force *)from; return 0; case 4: *(u32 *)to = *(u32 __force *)from; return 0; #ifdef CONFIG_64BIT case 8: *(u64 *)to = *(u64 __force *)from; return 0; #endif default: break; } } memcpy(to, (const void __force *)from, n); return 0; } #endif #ifndef __copy_to_user static inline __must_check long __copy_to_user(void __user *to, const void *from, unsigned long n) { if (__builtin_constant_p(n)) { switch(n) { case 1: *(u8 __force *)to = *(u8 *)from; return 0; case 2: *(u16 __force *)to = *(u16 *)from; return 0; case 4: *(u32 __force *)to = *(u32 *)from; return 0; #ifdef CONFIG_64BIT case 8: *(u64 __force *)to = *(u64 *)from; return 0; #endif default: break; } } memcpy((void __force *)to, from, n); return 0; } #endif /* * These are the main single-value transfer routines. They automatically * use the right size if we just have the right pointer type. * This version just falls back to copy_{from,to}_user, which should * provide a fast-path for small values. */ #define __put_user(x, ptr) \ ({ \ __typeof__(*(ptr)) __x = (x); \ int __pu_err = -EFAULT; \ __chk_user_ptr(ptr); \ switch (sizeof (*(ptr))) { \ case 1: \ case 2: \ case 4: \ case 8: \ __pu_err = __put_user_fn(sizeof (*(ptr)), \ ptr, &__x); \ break; \ default: \ __put_user_bad(); \ break; \ } \ __pu_err; \ }) #define put_user(x, ptr) \ ({ \ void *__p = (ptr); \ might_fault(); \ access_ok(VERIFY_WRITE, __p, sizeof(*ptr)) ? \ __put_user((x), ((__typeof__(*(ptr)) *)__p)) : \ -EFAULT; \ }) #ifndef __put_user_fn static inline int __put_user_fn(size_t size, void __user *ptr, void *x) { size = __copy_to_user(ptr, x, size); return size ? -EFAULT : size; } #define __put_user_fn(sz, u, k) __put_user_fn(sz, u, k) #endif extern int __put_user_bad(void) __attribute__((noreturn)); #define __get_user(x, ptr) \ ({ \ int __gu_err = -EFAULT; \ __chk_user_ptr(ptr); \ switch (sizeof(*(ptr))) { \ case 1: { \ unsigned char __x; \ __gu_err = __get_user_fn(sizeof (*(ptr)), \ ptr, &__x); \ (x) = *(__force __typeof__(*(ptr)) *) &__x; \ break; \ }; \ case 2: { \ unsigned short __x; \ __gu_err = __get_user_fn(sizeof (*(ptr)), \ ptr, &__x); \ (x) = *(__force __typeof__(*(ptr)) *) &__x; \ break; \ }; \ case 4: { \ unsigned int __x; \ __gu_err = __get_user_fn(sizeof (*(ptr)), \ ptr, &__x); \ (x) = *(__force __typeof__(*(ptr)) *) &__x; \ break; \ }; \ case 8: { \ unsigned long long __x; \ __gu_err = __get_user_fn(sizeof (*(ptr)), \ ptr, &__x); \ (x) = *(__force __typeof__(*(ptr)) *) &__x; \ break; \ }; \ default: \ __get_user_bad(); \ break; \ } \ __gu_err; \ }) #define get_user(x, ptr) \ ({ \ const void *__p = (ptr); \ might_fault(); \ access_ok(VERIFY_READ, __p, sizeof(*ptr)) ? \ __get_user((x), (__typeof__(*(ptr)) *)__p) : \ ((x) = (__typeof__(*(ptr)))0,-EFAULT); \ }) #ifndef __get_user_fn static inline int __get_user_fn(size_t size, const void __user *ptr, void *x) { size_t n = __copy_from_user(x, ptr, size); if (unlikely(n)) { memset(x + (size - n), 0, n); return -EFAULT; } return 0; } #define __get_user_fn(sz, u, k) __get_user_fn(sz, u, k) #endif extern int __get_user_bad(void) __attribute__((noreturn)); #ifndef __copy_from_user_inatomic #define __copy_from_user_inatomic __copy_from_user #endif #ifndef __copy_to_user_inatomic #define __copy_to_user_inatomic __copy_to_user #endif static inline long copy_from_user(void *to, const void __user * from, unsigned long n) { unsigned long res = n; might_fault(); if (likely(access_ok(VERIFY_READ, from, n))) res = __copy_from_user(to, from, n); if (unlikely(res)) memset(to + (n - res), 0, res); return res; } static inline long copy_to_user(void __user *to, const void *from, unsigned long n) { might_fault(); if (access_ok(VERIFY_WRITE, to, n)) return __copy_to_user(to, from, n); else return n; } /* * Copy a null terminated string from userspace. */ #ifndef __strncpy_from_user static inline long __strncpy_from_user(char *dst, const char __user *src, long count) { char *tmp; strncpy(dst, (const char __force *)src, count); for (tmp = dst; *tmp && count > 0; tmp++, count--) ; return (tmp - dst); } #endif static inline long strncpy_from_user(char *dst, const char __user *src, long count) { if (!access_ok(VERIFY_READ, src, 1)) return -EFAULT; return __strncpy_from_user(dst, src, count); } /* * Return the size of a string (including the ending 0) * * Return 0 on exception, a value greater than N if too long */ #ifndef __strnlen_user #define __strnlen_user(s, n) (strnlen((s), (n)) + 1) #endif /* * Unlike strnlen, strnlen_user includes the nul terminator in * its returned count. Callers should check for a returned value * greater than N as an indication the string is too long. */ static inline long strnlen_user(const char __user *src, long n) { if (!access_ok(VERIFY_READ, src, 1)) return 0; return __strnlen_user(src, n); } static inline long strlen_user(const char __user *src) { return strnlen_user(src, 32767); } /* * Zero Userspace */ #ifndef __clear_user static inline __must_check unsigned long __clear_user(void __user *to, unsigned long n) { memset((void __force *)to, 0, n); return 0; } #endif static inline __must_check unsigned long clear_user(void __user *to, unsigned long n) { might_fault(); if (!access_ok(VERIFY_WRITE, to, n)) return n; return __clear_user(to, n); } #endif /* __ASM_GENERIC_UACCESS_H */ ter being NULL and warn about it, so this clearly has happened before in other places. [ Reported it originally to the i915 developers on Jan 8, applying the ugly workaround on my own now after triggering the problem for the second time with no feedback. This is likely to be the same bug reported as https://bugs.freedesktop.org/show_bug.cgi?id=98829 https://bugs.freedesktop.org/show_bug.cgi?id=99134 which has a patch for the underlying problem, but it hasn't gotten to me, so I'm applying the workaround. ] Cc: Daniel Vetter <daniel.vetter@intel.com> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Imre Deak <imre.deak@intel.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'include/dt-bindings/pinctrl/am33xx.h')