/* * Software async crypto daemon * * Added AEAD support to cryptd. * Authors: Tadeusz Struk (tadeusz.struk@intel.com) * Adrian Hoban * Gabriele Paoloni * Aidan O'Mahony (aidan.o.mahony@intel.com) * Copyright (c) 2010, Intel Corporation. */ #ifndef _CRYPTO_CRYPT_H #define _CRYPTO_CRYPT_H #include #include #include #include struct cryptd_ablkcipher { struct crypto_ablkcipher base; }; static inline struct cryptd_ablkcipher *__cryptd_ablkcipher_cast( struct crypto_ablkcipher *tfm) { return (struct cryptd_ablkcipher *)tfm; } /* alg_name should be algorithm to be cryptd-ed */ struct cryptd_ablkcipher *cryptd_alloc_ablkcipher(const char *alg_name, u32 type, u32 mask); struct crypto_blkcipher *cryptd_ablkcipher_child(struct cryptd_ablkcipher *tfm); bool cryptd_ablkcipher_queued(struct cryptd_ablkcipher *tfm); void cryptd_free_ablkcipher(struct cryptd_ablkcipher *tfm); struct cryptd_skcipher { struct crypto_skcipher base; }; struct cryptd_skcipher *cryptd_alloc_skcipher(const char *alg_name, u32 type, u32 mask); struct crypto_skcipher *cryptd_skcipher_child(struct cryptd_skcipher *tfm); /* Must be called without moving CPUs. */ bool cryptd_skcipher_queued(struct cryptd_skcipher *tfm); void cryptd_free_skcipher(struct cryptd_skcipher *tfm); struct cryptd_ahash { struct crypto_ahash base; }; static inline struct cryptd_ahash *__cryptd_ahash_cast( struct crypto_ahash *tfm) { return (struct cryptd_ahash *)tfm; } /* alg_name should be algorithm to be cryptd-ed */ struct cryptd_ahash *cryptd_alloc_ahash(const char *alg_name, u32 type, u32 mask); struct crypto_shash *cryptd_ahash_child(struct cryptd_ahash *tfm); struct shash_desc *cryptd_shash_desc(struct ahash_request *req); /* Must be called without moving CPUs. */ bool cryptd_ahash_queued(struct cryptd_ahash *tfm); void cryptd_free_ahash(struct cryptd_ahash *tfm); struct cryptd_aead { struct crypto_aead base; }; static inline struct cryptd_aead *__cryptd_aead_cast( struct crypto_aead *tfm) { return (struct cryptd_aead *)tfm; } struct cryptd_aead *cryptd_alloc_aead(const char *alg_name, u32 type, u32 mask); struct crypto_aead *cryptd_aead_child(struct cryptd_aead *tfm); /* Must be called without moving CPUs. */ bool cryptd_aead_queued(struct cryptd_aead *tfm); void cryptd_free_aead(struct cryptd_aead *tfm); #endif ame='qt'>
diff options
context:
space:
mode:
authorDavid S. Miller <davem@davemloft.net>2017-01-30 14:28:22 -0800
committerDavid S. Miller <davem@davemloft.net>2017-01-30 14:28:22 -0800
commit54791b276b4000b307339f269d3bf7db877d536f (patch)
tree1c2616bd373ce5ea28aac2a53e32f5b5834901ce /net/rds/ib_mr.h
parent5d0e7705774dd412a465896d08d59a81a345c1e4 (diff)
parent047487241ff59374fded8c477f21453681f5995c (diff)
Merge branch 'sparc64-non-resumable-user-error-recovery'
Liam R. Howlett says: ==================== sparc64: Recover from userspace non-resumable PIO & MEM errors A non-resumable error from userspace is able to cause a kernel panic or trap loop due to the setup and handling of the queued traps once in the kernel. This patch series addresses both of these issues. The queues are fixed by simply zeroing the memory before use. PIO errors from userspace will result in a SIGBUS being sent to the user process. The MEM errors form userspace will result in a SIGKILL and also cause the offending pages to be claimed so they are no longer used in future tasks. SIGKILL is used to ensure that the process does not try to coredump and result in an attempt to read the memory again from within kernel space. Although there is a HV call to scrub the memory (mem_scrub), there is no easy way to guarantee that the real memory address(es) are not used by other tasks. Clearing the error with mem_scrub would zero the memory and cause the other processes to proceed with bad data. The handling of other non-resumable errors remain unchanged and will cause a panic. ==================== Signed-off-by: David S. Miller <davem@davemloft.net>
Diffstat (limited to 'net/rds/ib_mr.h')