/* * ipv6 in net namespaces */ #include #ifndef __NETNS_IPV6_H__ #define __NETNS_IPV6_H__ #include struct ctl_table_header; struct netns_sysctl_ipv6 { #ifdef CONFIG_SYSCTL struct ctl_table_header *hdr; struct ctl_table_header *route_hdr; struct ctl_table_header *icmp_hdr; struct ctl_table_header *frags_hdr; struct ctl_table_header *xfrm6_hdr; #endif int bindv6only; int flush_delay; int ip6_rt_max_size; int ip6_rt_gc_min_interval; int ip6_rt_gc_timeout; int ip6_rt_gc_interval; int ip6_rt_gc_elasticity; int ip6_rt_mtu_expires; int ip6_rt_min_advmss; int flowlabel_consistency; int auto_flowlabels; int icmpv6_time; int anycast_src_echo_reply; int ip_nonlocal_bind; int fwmark_reflect; int idgen_retries; int idgen_delay; int flowlabel_state_ranges; }; struct netns_ipv6 { struct netns_sysctl_ipv6 sysctl; struct ipv6_devconf *devconf_all; struct ipv6_devconf *devconf_dflt; struct inet_peer_base *peers; struct netns_frags frags; #ifdef CONFIG_NETFILTER struct xt_table *ip6table_filter; struct xt_table *ip6table_mangle; struct xt_table *ip6table_raw; #ifdef CONFIG_SECURITY struct xt_table *ip6table_security; #endif struct xt_table *ip6table_nat; #endif struct rt6_info *ip6_null_entry; struct rt6_statistics *rt6_stats; struct timer_list ip6_fib_timer; struct hlist_head *fib_table_hash; struct fib6_table *fib6_main_tbl; struct list_head fib6_walkers; struct dst_ops ip6_dst_ops; rwlock_t fib6_walker_lock; spinlock_t fib6_gc_lock; unsigned int ip6_rt_gc_expire; unsigned long ip6_rt_last_gc; #ifdef CONFIG_IPV6_MULTIPLE_TABLES struct rt6_info *ip6_prohibit_entry; struct rt6_info *ip6_blk_hole_entry; struct fib6_table *fib6_local_tbl; struct fib_rules_ops *fib6_rules_ops; #endif struct sock **icmp_sk; struct sock *ndisc_sk; struct sock *tcp_sk; struct sock *igmp_sk; struct sock *mc_autojoin_sk; #ifdef CONFIG_IPV6_MROUTE #ifndef CONFIG_IPV6_MROUTE_MULTIPLE_TABLES struct mr6_table *mrt6; #else struct list_head mr6_tables; struct fib_rules_ops *mr6_rules_ops; #endif #endif atomic_t dev_addr_genid; atomic_t fib6_sernum; struct seg6_pernet_data *seg6_data; }; #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6) struct netns_nf_frag { struct netns_sysctl_ipv6 sysctl; struct netns_frags frags; }; #endif #endif howmsg' value='1'/>
ption value='4'>4
AgeCommit message (Collapse)AuthorFilesLines
space:
mode:
authorDavid S. Miller <davem@davemloft.net>2017-01-30 14:28:22 -0800
committerDavid S. Miller <davem@davemloft.net>2017-01-30 14:28:22 -0800
commit54791b276b4000b307339f269d3bf7db877d536f (patch)
tree1c2616bd373ce5ea28aac2a53e32f5b5834901ce /include/drm/drm_atomic_helper.h
parent5d0e7705774dd412a465896d08d59a81a345c1e4 (diff)
parent047487241ff59374fded8c477f21453681f5995c (diff)
Merge branch 'sparc64-non-resumable-user-error-recovery'
Liam R. Howlett says: ==================== sparc64: Recover from userspace non-resumable PIO & MEM errors A non-resumable error from userspace is able to cause a kernel panic or trap loop due to the setup and handling of the queued traps once in the kernel. This patch series addresses both of these issues. The queues are fixed by simply zeroing the memory before use. PIO errors from userspace will result in a SIGBUS being sent to the user process. The MEM errors form userspace will result in a SIGKILL and also cause the offending pages to be claimed so they are no longer used in future tasks. SIGKILL is used to ensure that the process does not try to coredump and result in an attempt to read the memory again from within kernel space. Although there is a HV call to scrub the memory (mem_scrub), there is no easy way to guarantee that the real memory address(es) are not used by other tasks. Clearing the error with mem_scrub would zero the memory and cause the other processes to proceed with bad data. The handling of other non-resumable errors remain unchanged and will cause a panic. ==================== Signed-off-by: David S. Miller <davem@davemloft.net>
Diffstat (limited to 'include/drm/drm_atomic_helper.h')