/* SCTP kernel implementation
* (C) Copyright 2007 Hewlett-Packard Development Company, L.P.
*
* This file is part of the SCTP kernel implementation
*
* This SCTP implementation is free software;
* you can redistribute it and/or modify it under the terms of
* the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This SCTP implementation is distributed in the hope that it
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
* ************************
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU CC; see the file COPYING. If not, see
* .
*
* Please send any bug reports or fixes you make to the
* email address(es):
* lksctp developers
*
* Written or modified by:
* Vlad Yasevich
*/
#ifndef __sctp_auth_h__
#define __sctp_auth_h__
#include
struct sctp_endpoint;
struct sctp_association;
struct sctp_authkey;
struct sctp_hmacalgo;
struct crypto_shash;
/*
* Define a generic struct that will hold all the info
* necessary for an HMAC transform
*/
struct sctp_hmac {
__u16 hmac_id; /* one of the above ids */
char *hmac_name; /* name for loading */
__u16 hmac_len; /* length of the signature */
};
/* This is generic structure that containst authentication bytes used
* as keying material. It's a what is referred to as byte-vector all
* over SCTP-AUTH
*/
struct sctp_auth_bytes {
atomic_t refcnt;
__u32 len;
__u8 data[];
};
/* Definition for a shared key, weather endpoint or association */
struct sctp_shared_key {
struct list_head key_list;
__u16 key_id;
struct sctp_auth_bytes *key;
};
#define key_for_each(__key, __list_head) \
list_for_each_entry(__key, __list_head, key_list)
#define key_for_each_safe(__key, __tmp, __list_head) \
list_for_each_entry_safe(__key, __tmp, __list_head, key_list)
static inline void sctp_auth_key_hold(struct sctp_auth_bytes *key)
{
if (!key)
return;
atomic_inc(&key->refcnt);
}
void sctp_auth_key_put(struct sctp_auth_bytes *key);
struct sctp_shared_key *sctp_auth_shkey_create(__u16 key_id, gfp_t gfp);
void sctp_auth_destroy_keys(struct list_head *keys);
int sctp_auth_asoc_init_active_key(struct sctp_association *asoc, gfp_t gfp);
struct sctp_shared_key *sctp_auth_get_shkey(
const struct sctp_association *asoc,
__u16 key_id);
int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint *ep,
struct sctp_association *asoc,
gfp_t gfp);
int sctp_auth_init_hmacs(struct sctp_endpoint *ep, gfp_t gfp);
void sctp_auth_destroy_hmacs(struct crypto_shash *auth_hmacs[]);
struct sctp_hmac *sctp_auth_get_hmac(__u16 hmac_id);
struct sctp_hmac *sctp_auth_asoc_get_hmac(const struct sctp_association *asoc);
void sctp_auth_asoc_set_default_hmac(struct sctp_association *asoc,
struct sctp_hmac_algo_param *hmacs);
int sctp_auth_asoc_verify_hmac_id(const struct sctp_association *asoc,
__be16 hmac_id);
int sctp_auth_send_cid(sctp_cid_t chunk, const struct sctp_association *asoc);
int sctp_auth_recv_cid(sctp_cid_t chunk, const struct sctp_association *asoc);
void sctp_auth_calculate_hmac(const struct sctp_association *asoc,
struct sk_buff *skb,
struct sctp_auth_chunk *auth, gfp_t gfp);
/* API Helpers */
int sctp_auth_ep_add_chunkid(struct sctp_endpoint *ep, __u8 chunk_id);
int sctp_auth_ep_set_hmacs(struct sctp_endpoint *ep,
struct sctp_hmacalgo *hmacs);
int sctp_auth_set_key(struct sctp_endpoint *ep,
struct sctp_association *asoc,
struct sctp_authkey *auth_key);
int sctp_auth_set_active_key(struct sctp_endpoint *ep,
struct sctp_association *asoc,
__u16 key_id);
int sctp_auth_del_key_id(struct sctp_endpoint *ep,
struct sctp_association *asoc,
__u16 key_id);
#endif
tion value='0' selected='selected'>include
Liam R. Howlett says:
====================
sparc64: Recover from userspace non-resumable PIO & MEM errors
A non-resumable error from userspace is able to cause a kernel panic or trap
loop due to the setup and handling of the queued traps once in the kernel.
This patch series addresses both of these issues.
The queues are fixed by simply zeroing the memory before use.
PIO errors from userspace will result in a SIGBUS being sent to the user
process.
The MEM errors form userspace will result in a SIGKILL and also cause the
offending pages to be claimed so they are no longer used in future tasks.
SIGKILL is used to ensure that the process does not try to coredump and result
in an attempt to read the memory again from within kernel space. Although
there is a HV call to scrub the memory (mem_scrub), there is no easy way to
guarantee that the real memory address(es) are not used by other tasks.
Clearing the error with mem_scrub would zero the memory and cause the other
processes to proceed with bad data.
The handling of other non-resumable errors remain unchanged and will cause a
panic.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>