#undef TRACE_SYSTEM #define TRACE_SYSTEM irq #if !defined(_TRACE_IRQ_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_IRQ_H #include struct irqaction; struct softirq_action; #define SOFTIRQ_NAME_LIST \ softirq_name(HI) \ softirq_name(TIMER) \ softirq_name(NET_TX) \ softirq_name(NET_RX) \ softirq_name(BLOCK) \ softirq_name(IRQ_POLL) \ softirq_name(TASKLET) \ softirq_name(SCHED) \ softirq_name(HRTIMER) \ softirq_name_end(RCU) #undef softirq_name #undef softirq_name_end #define softirq_name(sirq) TRACE_DEFINE_ENUM(sirq##_SOFTIRQ); #define softirq_name_end(sirq) TRACE_DEFINE_ENUM(sirq##_SOFTIRQ); SOFTIRQ_NAME_LIST #undef softirq_name #undef softirq_name_end #define softirq_name(sirq) { sirq##_SOFTIRQ, #sirq }, #define softirq_name_end(sirq) { sirq##_SOFTIRQ, #sirq } #define show_softirq_name(val) \ __print_symbolic(val, SOFTIRQ_NAME_LIST) /** * irq_handler_entry - called immediately before the irq action handler * @irq: irq number * @action: pointer to struct irqaction * * The struct irqaction pointed to by @action contains various * information about the handler, including the device name, * @action->name, and the device id, @action->dev_id. When used in * conjunction with the irq_handler_exit tracepoint, we can figure * out irq handler latencies. */ TRACE_EVENT(irq_handler_entry, TP_PROTO(int irq, struct irqaction *action), TP_ARGS(irq, action), TP_STRUCT__entry( __field( int, irq ) __string( name, action->name ) ), TP_fast_assign( __entry->irq = irq; __assign_str(name, action->name); ), TP_printk("irq=%d name=%s", __entry->irq, __get_str(name)) ); /** * irq_handler_exit - called immediately after the irq action handler returns * @irq: irq number * @action: pointer to struct irqaction * @ret: return value * * If the @ret value is set to IRQ_HANDLED, then we know that the corresponding * @action->handler successfully handled this irq. Otherwise, the irq might be * a shared irq line, or the irq was not handled successfully. Can be used in * conjunction with the irq_handler_entry to understand irq handler latencies. */ TRACE_EVENT(irq_handler_exit, TP_PROTO(int irq, struct irqaction *action, int ret), TP_ARGS(irq, action, ret), TP_STRUCT__entry( __field( int, irq ) __field( int, ret ) ), TP_fast_assign( __entry->irq = irq; __entry->ret = ret; ), TP_printk("irq=%d ret=%s", __entry->irq, __entry->ret ? "handled" : "unhandled") ); DECLARE_EVENT_CLASS(softirq, TP_PROTO(unsigned int vec_nr), TP_ARGS(vec_nr), TP_STRUCT__entry( __field( unsigned int, vec ) ), TP_fast_assign( __entry->vec = vec_nr; ), TP_printk("vec=%u [action=%s]", __entry->vec, show_softirq_name(__entry->vec)) ); /** * softirq_entry - called immediately before the softirq handler * @vec_nr: softirq vector number * * When used in combination with the softirq_exit tracepoint * we can determine the softirq handler routine. */ DEFINE_EVENT(softirq, softirq_entry, TP_PROTO(unsigned int vec_nr), TP_ARGS(vec_nr) ); /** * softirq_exit - called immediately after the softirq handler returns * @vec_nr: softirq vector number * * When used in combination with the softirq_entry tracepoint * we can determine the softirq handler routine. */ DEFINE_EVENT(softirq, softirq_exit, TP_PROTO(unsigned int vec_nr), TP_ARGS(vec_nr) ); /** * softirq_raise - called immediately when a softirq is raised * @vec_nr: softirq vector number * * When used in combination with the softirq_entry tracepoint * we can determine the softirq raise to run latency. */ DEFINE_EVENT(softirq, softirq_raise, TP_PROTO(unsigned int vec_nr), TP_ARGS(vec_nr) ); #endif /* _TRACE_IRQ_H */ /* This part must be outside protection */ #include ;'>space:mode:
authorDavid S. Miller <davem@davemloft.net>2017-01-30 14:28:22 -0800
committerDavid S. Miller <davem@davemloft.net>2017-01-30 14:28:22 -0800
commit54791b276b4000b307339f269d3bf7db877d536f (patch)
tree1c2616bd373ce5ea28aac2a53e32f5b5834901ce /include/net/request_sock.h
parent5d0e7705774dd412a465896d08d59a81a345c1e4 (diff)
parent047487241ff59374fded8c477f21453681f5995c (diff)
Merge branch 'sparc64-non-resumable-user-error-recovery'
Liam R. Howlett says: ==================== sparc64: Recover from userspace non-resumable PIO & MEM errors A non-resumable error from userspace is able to cause a kernel panic or trap loop due to the setup and handling of the queued traps once in the kernel. This patch series addresses both of these issues. The queues are fixed by simply zeroing the memory before use. PIO errors from userspace will result in a SIGBUS being sent to the user process. The MEM errors form userspace will result in a SIGKILL and also cause the offending pages to be claimed so they are no longer used in future tasks. SIGKILL is used to ensure that the process does not try to coredump and result in an attempt to read the memory again from within kernel space. Although there is a HV call to scrub the memory (mem_scrub), there is no easy way to guarantee that the real memory address(es) are not used by other tasks. Clearing the error with mem_scrub would zero the memory and cause the other processes to proceed with bad data. The handling of other non-resumable errors remain unchanged and will cause a panic. ==================== Signed-off-by: David S. Miller <davem@davemloft.net>
Diffstat (limited to 'include/net/request_sock.h')