/* QLogic qedr NIC Driver * Copyright (c) 2015-2016 QLogic Corporation * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and /or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef __QEDR_USER_H__ #define __QEDR_USER_H__ #include #define QEDR_ABI_VERSION (8) /* user kernel communication data structures. */ struct qedr_alloc_ucontext_resp { __u64 db_pa; __u32 db_size; __u32 max_send_wr; __u32 max_recv_wr; __u32 max_srq_wr; __u32 sges_per_send_wr; __u32 sges_per_recv_wr; __u32 sges_per_srq_wr; __u32 max_cqes; }; struct qedr_alloc_pd_ureq { __u64 rsvd1; }; struct qedr_alloc_pd_uresp { __u32 pd_id; }; struct qedr_create_cq_ureq { __u64 addr; __u64 len; }; struct qedr_create_cq_uresp { __u32 db_offset; __u16 icid; }; struct qedr_create_qp_ureq { __u32 qp_handle_hi; __u32 qp_handle_lo; /* SQ */ /* user space virtual address of SQ buffer */ __u64 sq_addr; /* length of SQ buffer */ __u64 sq_len; /* RQ */ /* user space virtual address of RQ buffer */ __u64 rq_addr; /* length of RQ buffer */ __u64 rq_len; }; struct qedr_create_qp_uresp { __u32 qp_id; __u32 atomic_supported; /* SQ */ __u32 sq_db_offset; __u16 sq_icid; /* RQ */ __u32 rq_db_offset; __u16 rq_icid; __u32 rq_db2_offset; }; #endif /* __QEDR_USER_H__ */ 6e8177f91b'/>
path: root/tools/perf/design.txt
diff options
context:
space:
mode:
authorBenjamin Herrenschmidt <benh@kernel.crashing.org>2017-02-03 17:10:28 +1100
committerMichael Ellerman <mpe@ellerman.id.au>2017-02-08 23:36:29 +1100
commitd7df2443cd5f67fc6ee7c05a88e4996e8177f91b (patch)
tree098a7c0ca4fceb8a65cb1f693c9d71990388933d /tools/perf/design.txt
parenta0615a16f7d0ceb5804d295203c302d496d8ee91 (diff)
powerpc/mm: Fix spurrious segfaults on radix with autonuma
When autonuma (Automatic NUMA balancing) marks a PTE inaccessible it clears all the protection bits but leave the PTE valid. With the Radix MMU, an attempt at executing from such a PTE will take a fault with bit 35 of SRR1 set "SRR1_ISI_N_OR_G". It is thus incorrect to treat all such faults as errors. We should pass them to handle_mm_fault() for autonuma to deal with. The case of pages that are really not executable is handled by the existing test for VM_EXEC further down. That leaves us with catching the kernel attempts at executing user pages. We can catch that earlier, even before we do find_vma. It is never valid on powerpc for the kernel to take an exec fault to begin with. So fold that test with the existing test for the kernel faulting on kernel addresses to bail out early. Fixes: 1d18ad026844 ("powerpc/mm: Detect instruction fetch denied and report") Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Balbir Singh <bsingharora@gmail.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Diffstat (limited to 'tools/perf/design.txt')