#ifndef __SOUND_ASOUND_FM_H #define __SOUND_ASOUND_FM_H /* * Advanced Linux Sound Architecture - ALSA * * Interface file between ALSA driver & user space * Copyright (c) 1994-98 by Jaroslav Kysela , * 4Front Technologies * * Direct FM control * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #define SNDRV_DM_FM_MODE_OPL2 0x00 #define SNDRV_DM_FM_MODE_OPL3 0x01 struct snd_dm_fm_info { unsigned char fm_mode; /* OPL mode, see SNDRV_DM_FM_MODE_XXX */ unsigned char rhythm; /* percussion mode flag */ }; /* * Data structure composing an FM "note" or sound event. */ struct snd_dm_fm_voice { unsigned char op; /* operator cell (0 or 1) */ unsigned char voice; /* FM voice (0 to 17) */ unsigned char am; /* amplitude modulation */ unsigned char vibrato; /* vibrato effect */ unsigned char do_sustain; /* sustain phase */ unsigned char kbd_scale; /* keyboard scaling */ unsigned char harmonic; /* 4 bits: harmonic and multiplier */ unsigned char scale_level; /* 2 bits: decrease output freq rises */ unsigned char volume; /* 6 bits: volume */ unsigned char attack; /* 4 bits: attack rate */ unsigned char decay; /* 4 bits: decay rate */ unsigned char sustain; /* 4 bits: sustain level */ unsigned char release; /* 4 bits: release rate */ unsigned char feedback; /* 3 bits: feedback for op0 */ unsigned char connection; /* 0 for serial, 1 for parallel */ unsigned char left; /* stereo left */ unsigned char right; /* stereo right */ unsigned char waveform; /* 3 bits: waveform shape */ }; /* * This describes an FM note by its voice, octave, frequency number (10bit) * and key on/off. */ struct snd_dm_fm_note { unsigned char voice; /* 0-17 voice channel */ unsigned char octave; /* 3 bits: what octave to play */ unsigned int fnum; /* 10 bits: frequency number */ unsigned char key_on; /* set for active, clear for silent */ }; /* * FM parameters that apply globally to all voices, and thus are not "notes" */ struct snd_dm_fm_params { unsigned char am_depth; /* amplitude modulation depth (1=hi) */ unsigned char vib_depth; /* vibrato depth (1=hi) */ unsigned char kbd_split; /* keyboard split */ unsigned char rhythm; /* percussion mode select */ /* This block is the percussion instrument data */ unsigned char bass; unsigned char snare; unsigned char tomtom; unsigned char cymbal; unsigned char hihat; }; /* * FM mode ioctl settings */ #define SNDRV_DM_FM_IOCTL_INFO _IOR('H', 0x20, struct snd_dm_fm_info) #define SNDRV_DM_FM_IOCTL_RESET _IO ('H', 0x21) #define SNDRV_DM_FM_IOCTL_PLAY_NOTE _IOW('H', 0x22, struct snd_dm_fm_note) #define SNDRV_DM_FM_IOCTL_SET_VOICE _IOW('H', 0x23, struct snd_dm_fm_voice) #define SNDRV_DM_FM_IOCTL_SET_PARAMS _IOW('H', 0x24, struct snd_dm_fm_params) #define SNDRV_DM_FM_IOCTL_SET_MODE _IOW('H', 0x25, int) /* for OPL3 only */ #define SNDRV_DM_FM_IOCTL_SET_CONNECTION _IOW('H', 0x26, int) /* SBI patch management */ #define SNDRV_DM_FM_IOCTL_CLEAR_PATCHES _IO ('H', 0x40) #define SNDRV_DM_FM_OSS_IOCTL_RESET 0x20 #define SNDRV_DM_FM_OSS_IOCTL_PLAY_NOTE 0x21 #define SNDRV_DM_FM_OSS_IOCTL_SET_VOICE 0x22 #define SNDRV_DM_FM_OSS_IOCTL_SET_PARAMS 0x23 #define SNDRV_DM_FM_OSS_IOCTL_SET_MODE 0x24 #define SNDRV_DM_FM_OSS_IOCTL_SET_OPL 0x25 /* * Patch Record - fixed size for write */ #define FM_KEY_SBI "SBI\032" #define FM_KEY_2OP "2OP\032" #define FM_KEY_4OP "4OP\032" struct sbi_patch { unsigned char prog; unsigned char bank; char key[4]; char name[25]; char extension[7]; unsigned char data[32]; }; #endif /* __SOUND_ASOUND_FM_H */ 0space:mode:
authorBenjamin Herrenschmidt <benh@kernel.crashing.org>2017-02-03 17:10:28 +1100
committerMichael Ellerman <mpe@ellerman.id.au>2017-02-08 23:36:29 +1100
commitd7df2443cd5f67fc6ee7c05a88e4996e8177f91b (patch)
tree098a7c0ca4fceb8a65cb1f693c9d71990388933d /net/ipv4/inet_fragment.c
parenta0615a16f7d0ceb5804d295203c302d496d8ee91 (diff)
powerpc/mm: Fix spurrious segfaults on radix with autonuma
When autonuma (Automatic NUMA balancing) marks a PTE inaccessible it clears all the protection bits but leave the PTE valid. With the Radix MMU, an attempt at executing from such a PTE will take a fault with bit 35 of SRR1 set "SRR1_ISI_N_OR_G". It is thus incorrect to treat all such faults as errors. We should pass them to handle_mm_fault() for autonuma to deal with. The case of pages that are really not executable is handled by the existing test for VM_EXEC further down. That leaves us with catching the kernel attempts at executing user pages. We can catch that earlier, even before we do find_vma. It is never valid on powerpc for the kernel to take an exec fault to begin with. So fold that test with the existing test for the kernel faulting on kernel addresses to bail out early. Fixes: 1d18ad026844 ("powerpc/mm: Detect instruction fetch denied and report") Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Balbir Singh <bsingharora@gmail.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Diffstat (limited to 'net/ipv4/inet_fragment.c')