/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com * * This program is free software; you can redistribute it and/or * modify it under the terms of version 2 of the GNU General Public * License as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. */ #include <linux/bpf.h> #include <linux/err.h> #include <linux/slab.h> #include <linux/mm.h> #include <linux/filter.h> #include <linux/perf_event.h> static void bpf_array_free_percpu(struct bpf_array *array) { int i; for (i = 0; i < array->map.max_entries; i++) free_percpu(array->pptrs[i]); } static int bpf_array_alloc_percpu(struct bpf_array *array) { void __percpu *ptr; int i; for (i = 0; i < array->map.max_entries; i++) { ptr = __alloc_percpu_gfp(array->elem_size, 8, GFP_USER | __GFP_NOWARN); if (!ptr) { bpf_array_free_percpu(array); return -ENOMEM; } array->pptrs[i] = ptr; } return 0; } /* Called from syscall */ static struct bpf_map *array_map_alloc(union bpf_attr *attr) { bool percpu = attr->map_type == BPF_MAP_TYPE_PERCPU_ARRAY; struct bpf_array *array; u64 array_size; u32 elem_size; /* check sanity of attributes */ if (attr->max_entries == 0 || attr->key_size != 4 || attr->value_size == 0 || attr->map_flags) return ERR_PTR(-EINVAL); if (attr->value_size > KMALLOC_MAX_SIZE) /* if value_size is bigger, the user space won't be able to * access the elements. */ return ERR_PTR(-E2BIG); elem_size = round_up(attr->value_size, 8); array_size = sizeof(*array); if (percpu) array_size += (u64) attr->max_entries * sizeof(void *); else array_size += (u64) attr->max_entries * elem_size; /* make sure there is no u32 overflow later in round_up() */ if (array_size >= U32_MAX - PAGE_SIZE) return ERR_PTR(-ENOMEM); /* allocate all map elements and zero-initialize them */ array = bpf_map_area_alloc(array_size); if (!array) return ERR_PTR(-ENOMEM); /* copy mandatory map attributes */ array->map.map_type = attr->map_type; array->map.key_size = attr->key_size; array->map.value_size = attr->value_size; array->map.max_entries = attr->max_entries; array->elem_size = elem_size; if (!percpu) goto out; array_size += (u64) attr->max_entries * elem_size * num_possible_cpus(); if (array_size >= U32_MAX - PAGE_SIZE || elem_size > PCPU_MIN_UNIT_SIZE || bpf_array_alloc_percpu(array)) { bpf_map_area_free(array); return ERR_PTR(-ENOMEM); } out: array->map.pages = round_up(array_size, PAGE_SIZE) >> PAGE_SHIFT; return &array->map; } /* Called from syscall or from eBPF program */ static void *array_map_lookup_elem(struct bpf_map *map, void *key) { struct bpf_array *array = container_of(map, struct bpf_array, map); u32 index = *(u32 *)key; if (unlikely(index >= array->map.max_entries)) return NULL; return array->value + array->elem_size * index; } /* Called from eBPF program */ static void *percpu_array_map_lookup_elem(struct bpf_map *map, void *key) { struct bpf_array *array = container_of(map, struct bpf_array, map); u32 index = *(u32 *)key; if (unlikely(index >= array->map.max_entries)) return NULL; return this_cpu_ptr(array->pptrs[index]); } int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value) { struct bpf_array *array = container_of(map, struct bpf_array, map); u32 index = *(u32 *)key; void __percpu *pptr; int cpu, off = 0; u32 size; if (unlikely(index >= array->map.max_entries)) return -ENOENT; /* per_cpu areas are zero-filled and bpf programs can only * access 'value_size' of them, so copying rounded areas * will not leak any kernel data */ size = round_up(map->value_size, 8); rcu_read_lock(); pptr = array->pptrs[index]; for_each_possible_cpu(cpu) { bpf_long_memcpy(value + off, per_cpu_ptr(pptr, cpu), size); off += size; } rcu_read_unlock(); return 0; } /* Called from syscall */ static int array_map_get_next_key(struct bpf_map *map, void *key, void *next_key) { struct bpf_array *array = container_of(map, struct bpf_array, map); u32 index = *(u32 *)key; u32 *next = (u32 *)next_key; if (index >= array->map.max_entries) { *next = 0; return 0; } if (index == array->map.max_entries - 1) return -ENOENT; *next = index + 1; return 0; } /* Called from syscall or from eBPF program */ static int array_map_update_elem(struct bpf_map *map, void *key, void *value, u64 map_flags) { struct bpf_array *array = container_of(map, struct bpf_array, map); u32 index = *(u32 *)key; if (unlikely(map_flags > BPF_EXIST)) /* unknown flags */ return -EINVAL; if (unlikely(index >= array->map.max_entries)) /* all elements were pre-allocated, cannot insert a new one */ return -E2BIG; if (unlikely(map_flags == BPF_NOEXIST)) /* all elements already exist */ return -EEXIST; if (array->map.map_type == BPF_MAP_TYPE_PERCPU_ARRAY) memcpy(this_cpu_ptr(array->pptrs[index]), value, map->value_size); else memcpy(array->value + array->elem_size * index, value, map->value_size); return 0; } int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value, u64 map_flags) { struct bpf_array *array = container_of(map, struct bpf_array, map); u32 index = *(u32 *)key; void __percpu *pptr; int cpu, off = 0; u32 size; if (unlikely(map_flags > BPF_EXIST)) /* unknown flags */ return -EINVAL; if (unlikely(index >= array->map.max_entries)) /* all elements were pre-allocated, cannot insert a new one */ return -E2BIG; if (unlikely(map_flags == BPF_NOEXIST)) /* all elements already exist */ return -EEXIST; /* the user space will provide round_up(value_size, 8) bytes that * will be copied into per-cpu area. bpf programs can only access * value_size of it. During lookup the same extra bytes will be * returned or zeros which were zero-filled by percpu_alloc, * so no kernel data leaks possible */ size = round_up(map->value_size, 8); rcu_read_lock(); pptr = array->pptrs[index]; for_each_possible_cpu(cpu) { bpf_long_memcpy(per_cpu_ptr(pptr, cpu), value + off, size); off += size; } rcu_read_unlock(); return 0; } /* Called from syscall or from eBPF program */ static int array_map_delete_elem(struct bpf_map *map, void *key) { return -EINVAL; } /* Called when map->refcnt goes to zero, either from workqueue or from syscall */ static void array_map_free(struct bpf_map *map) { struct bpf_array *array = container_of(map, struct bpf_array, map); /* at this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0, * so the programs (can be more than one that used this map) were * disconnected from events. Wait for outstanding programs to complete * and free the array */ synchronize_rcu(); if (array->map.map_type == BPF_MAP_TYPE_PERCPU_ARRAY) bpf_array_free_percpu(array); bpf_map_area_free(array); } static const struct bpf_map_ops array_ops = { .map_alloc = array_map_alloc, .map_free = array_map_free, .map_get_next_key = array_map_get_next_key, .map_lookup_elem = array_map_lookup_elem, .map_update_elem = array_map_update_elem, .map_delete_elem = array_map_delete_elem, }; static struct bpf_map_type_list array_type __read_mostly = { .ops = &array_ops, .type = BPF_MAP_TYPE_ARRAY, }; static const struct bpf_map_ops percpu_array_ops = { .map_alloc = array_map_alloc, .map_free = array_map_free, .map_get_next_key = array_map_get_next_key, .map_lookup_elem = percpu_array_map_lookup_elem, .map_update_elem = array_map_update_elem, .map_delete_elem = array_map_delete_elem, }; static struct bpf_map_type_list percpu_array_type __read_mostly = { .ops = &percpu_array_ops, .type = BPF_MAP_TYPE_PERCPU_ARRAY, }; static int __init register_array_map(void) { bpf_register_map_type(&array_type); bpf_register_map_type(&percpu_array_type); return 0; } late_initcall(register_array_map); static struct bpf_map *fd_array_map_alloc(union bpf_attr *attr) { /* only file descriptors can be stored in this type of map */ if (attr->value_size != sizeof(u32)) return ERR_PTR(-EINVAL); return array_map_alloc(attr); } static void fd_array_map_free(struct bpf_map *map) { struct bpf_array *array = container_of(map, struct bpf_array, map); int i; synchronize_rcu(); /* make sure it's empty */ for (i = 0; i < array->map.max_entries; i++) BUG_ON(array->ptrs[i] != NULL); bpf_map_area_free(array); } static void *fd_array_map_lookup_elem(struct bpf_map *map, void *key) { return NULL; } /* only called from syscall */ int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file, void *key, void *value, u64 map_flags) { struct bpf_array *array = container_of(map, struct bpf_array, map); void *new_ptr, *old_ptr; u32 index = *(u32 *)key, ufd; if (map_flags != BPF_ANY) return -EINVAL; if (index >= array->map.max_entries) return -E2BIG; ufd = *(u32 *)value; new_ptr = map->ops->map_fd_get_ptr(map, map_file, ufd); if (IS_ERR(new_ptr)) return PTR_ERR(new_ptr); old_ptr = xchg(array->ptrs + index, new_ptr); if (old_ptr) map->ops->map_fd_put_ptr(old_ptr); return 0; } static int fd_array_map_delete_elem(struct bpf_map *map, void *key) { struct bpf_array *array = container_of(map, struct bpf_array, map); void *old_ptr; u32 index = *(u32 *)key; if (index >= array->map.max_entries) return -E2BIG; old_ptr = xchg(array->ptrs + index, NULL); if (old_ptr) { map->ops->map_fd_put_ptr(old_ptr); return 0; } else { return -ENOENT; } } static void *prog_fd_array_get_ptr(struct bpf_map *map, struct file *map_file, int fd) { struct bpf_array *array = container_of(map, struct bpf_array, map); struct bpf_prog *prog = bpf_prog_get(fd); if (IS_ERR(prog)) return prog; if (!bpf_prog_array_compatible(array, prog)) { bpf_prog_put(prog); return ERR_PTR(-EINVAL); } return prog; } static void prog_fd_array_put_ptr(void *ptr) { bpf_prog_put(ptr); } /* decrement refcnt of all bpf_progs that are stored in this map */ void bpf_fd_array_map_clear(struct bpf_map *map) { struct bpf_array *array = container_of(map, struct bpf_array, map); int i; for (i = 0; i < array->map.max_entries; i++) fd_array_map_delete_elem(map, &i); } static const struct bpf_map_ops prog_array_ops = { .map_alloc = fd_array_map_alloc, .map_free = fd_array_map_free, .map_get_next_key = array_map_get_next_key, .map_lookup_elem = fd_array_map_lookup_elem, .map_delete_elem = fd_array_map_delete_elem, .map_fd_get_ptr = prog_fd_array_get_ptr, .map_fd_put_ptr = prog_fd_array_put_ptr, }; static struct bpf_map_type_list prog_array_type __read_mostly = { .ops = &prog_array_ops, .type = BPF_MAP_TYPE_PROG_ARRAY, }; static int __init register_prog_array_map(void) { bpf_register_map_type(&prog_array_type); return 0; } late_initcall(register_prog_array_map); static struct bpf_event_entry *bpf_event_entry_gen(struct file *perf_file, struct file *map_file) { struct bpf_event_entry *ee; ee = kzalloc(sizeof(*ee), GFP_ATOMIC); if (ee) { ee->event = perf_file->private_data; ee->perf_file = perf_file; ee->map_file = map_file; } return ee; } static void __bpf_event_entry_free(struct rcu_head *rcu) { struct bpf_event_entry *ee; ee = container_of(rcu, struct bpf_event_entry, rcu); fput(ee->perf_file); kfree(ee); } static void bpf_event_entry_free_rcu(struct bpf_event_entry *ee) { call_rcu(&ee->rcu, __bpf_event_entry_free); } static void *perf_event_fd_array_get_ptr(struct bpf_map *map, struct file *map_file, int fd) { const struct perf_event_attr *attr; struct bpf_event_entry *ee; struct perf_event *event; struct file *perf_file; perf_file = perf_event_get(fd); if (IS_ERR(perf_file)) return perf_file; event = perf_file->private_data; ee = ERR_PTR(-EINVAL); attr = perf_event_attrs(event); if (IS_ERR(attr) || attr->inherit) goto err_out; switch (attr->type) { case PERF_TYPE_SOFTWARE: if (attr->config != PERF_COUNT_SW_BPF_OUTPUT) goto err_out; /* fall-through */ case PERF_TYPE_RAW: case PERF_TYPE_HARDWARE: ee = bpf_event_entry_gen(perf_file, map_file); if (ee) return ee; ee = ERR_PTR(-ENOMEM); /* fall-through */ default: break; } err_out: fput(perf_file); return ee; } static void perf_event_fd_array_put_ptr(void *ptr) { bpf_event_entry_free_rcu(ptr); } static void perf_event_fd_array_release(struct bpf_map *map, struct file *map_file) { struct bpf_array *array = container_of(map, struct bpf_array, map); struct bpf_event_entry *ee; int i; rcu_read_lock(); for (i = 0; i < array->map.max_entries; i++) { ee = READ_ONCE(array->ptrs[i]); if (ee && ee->map_file == map_file) fd_array_map_delete_elem(map, &i); } rcu_read_unlock(); } static const struct bpf_map_ops perf_event_array_ops = { .map_alloc = fd_array_map_alloc, .map_free = fd_array_map_free, .map_get_next_key = array_map_get_next_key, .map_lookup_elem = fd_array_map_lookup_elem, .map_delete_elem = fd_array_map_delete_elem, .map_fd_get_ptr = perf_event_fd_array_get_ptr, .map_fd_put_ptr = perf_event_fd_array_put_ptr, .map_release = perf_event_fd_array_release, }; static struct bpf_map_type_list perf_event_array_type __read_mostly = { .ops = &perf_event_array_ops, .type = BPF_MAP_TYPE_PERF_EVENT_ARRAY, }; static int __init register_perf_event_array_map(void) { bpf_register_map_type(&perf_event_array_type); return 0; } late_initcall(register_perf_event_array_map); #ifdef CONFIG_CGROUPS static void *cgroup_fd_array_get_ptr(struct bpf_map *map, struct file *map_file /* not used */, int fd) { return cgroup_get_from_fd(fd); } static void cgroup_fd_array_put_ptr(void *ptr) { /* cgroup_put free cgrp after a rcu grace period */ cgroup_put(ptr); } static void cgroup_fd_array_free(struct bpf_map *map) { bpf_fd_array_map_clear(map); fd_array_map_free(map); } static const struct bpf_map_ops cgroup_array_ops = { .map_alloc = fd_array_map_alloc, .map_free = cgroup_fd_array_free, .map_get_next_key = array_map_get_next_key, .map_lookup_elem = fd_array_map_lookup_elem, .map_delete_elem = fd_array_map_delete_elem, .map_fd_get_ptr = cgroup_fd_array_get_ptr, .map_fd_put_ptr = cgroup_fd_array_put_ptr, }; static struct bpf_map_type_list cgroup_array_type __read_mostly = { .ops = &cgroup_array_ops, .type = BPF_MAP_TYPE_CGROUP_ARRAY, }; static int __init register_cgroup_array_map(void) { bpf_register_map_type(&cgroup_array_type); return 0; } late_initcall(register_cgroup_array_map); #endif