/* * Kernel Debugger Architecture Independent Stack Traceback * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (c) 1999-2004 Silicon Graphics, Inc. All Rights Reserved. * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved. */ #include #include #include #include #include #include #include "kdb_private.h" static void kdb_show_stack(struct task_struct *p, void *addr) { int old_lvl = console_loglevel; console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH; kdb_trap_printk++; kdb_set_current_task(p); if (addr) { show_stack((struct task_struct *)p, addr); } else if (kdb_current_regs) { #ifdef CONFIG_X86 show_stack(p, &kdb_current_regs->sp); #else show_stack(p, NULL); #endif } else { show_stack(p, NULL); } console_loglevel = old_lvl; kdb_trap_printk--; } /* * kdb_bt * * This function implements the 'bt' command. Print a stack * traceback. * * bt [] (addr-exp is for alternate stacks) * btp Kernel stack for * btt Kernel stack for task structure at * * bta [DRSTCZEUIMA] All useful processes, optionally * filtered by state * btc [] The current process on one cpu, * default is all cpus * * bt refers to a address on the stack, that location * is assumed to contain a return address. * * btt refers to the address of a struct task. * * Inputs: * argc argument count * argv argument vector * Outputs: * None. * Returns: * zero for success, a kdb diagnostic if error * Locking: * none. * Remarks: * Backtrack works best when the code uses frame pointers. But even * without frame pointers we should get a reasonable trace. * * mds comes in handy when examining the stack to do a manual traceback or * to get a starting point for bt . */ static int kdb_bt1(struct task_struct *p, unsigned long mask, int argcount, int btaprompt) { char buffer[2]; if (kdb_getarea(buffer[0], (unsigned long)p) || kdb_getarea(buffer[0], (unsigned long)(p+1)-1)) return KDB_BADADDR; if (!kdb_task_state(p, mask)) return 0; kdb_printf("Stack traceback for pid %d\n", p->pid); kdb_ps1(p); kdb_show_stack(p, NULL); if (btaprompt) { kdb_getstr(buffer, sizeof(buffer), "Enter to end, to continue:"); if (buffer[0] == 'q') { kdb_printf("\n"); return 1; } } touch_nmi_watchdog(); return 0; } int kdb_bt(int argc, const char **argv) { int diag; int argcount = 5; int btaprompt = 1; int nextarg; unsigned long addr; long offset; /* Prompt after each proc in bta */ kdbgetintenv("BTAPROMPT", &btaprompt); if (strcmp(argv[0], "bta") == 0) { struct task_struct *g, *p; unsigned long cpu; unsigned long mask = kdb_task_state_string(argc ? argv[1] : NULL); if (argc == 0) kdb_ps_suppressed(); /* Run the active tasks first */ for_each_online_cpu(cpu) { p = kdb_curr_task(cpu); if (kdb_bt1(p, mask, argcount, btaprompt)) return 0; } /* Now the inactive tasks */ kdb_do_each_thread(g, p) { if (KDB_FLAG(CMD_INTERRUPT)) return 0; if (task_curr(p)) continue; if (kdb_bt1(p, mask, argcount, btaprompt)) return 0; } kdb_while_each_thread(g, p); } else if (strcmp(argv[0], "btp") == 0) { struct task_struct *p; unsigned long pid; if (argc != 1) return KDB_ARGCOUNT; diag = kdbgetularg((char *)argv[1], &pid); if (diag) return diag; p = find_task_by_pid_ns(pid, &init_pid_ns); if (p) { kdb_set_current_task(p); return kdb_bt1(p, ~0UL, argcount, 0); } kdb_printf("No process with pid == %ld found\n", pid); return 0; } else if (strcmp(argv[0], "btt") == 0) { if (argc != 1) return KDB_ARGCOUNT; diag = kdbgetularg((char *)argv[1], &addr); if (diag) return diag; kdb_set_current_task((struct task_struct *)addr); return kdb_bt1((struct task_struct *)addr, ~0UL, argcount, 0); } else if (strcmp(argv[0], "btc") == 0) { unsigned long cpu = ~0; struct task_struct *save_current_task = kdb_current_task; char buf[80]; if (argc > 1) return KDB_ARGCOUNT; if (argc == 1) { diag = kdbgetularg((char *)argv[1], &cpu); if (diag) return diag; } /* Recursive use of kdb_parse, do not use argv after * this point */ argv = NULL; if (cpu != ~0) { if (cpu >= num_possible_cpus() || !cpu_online(cpu)) { kdb_printf("no process for cpu %ld\n", cpu); return 0; } sprintf(buf, "btt 0x%p\n", KDB_TSK(cpu)); kdb_parse(buf); return 0; } kdb_printf("btc: cpu status: "); kdb_parse("cpu\n"); for_each_online_cpu(cpu) { sprintf(buf, "btt 0x%p\n", KDB_TSK(cpu)); kdb_parse(buf); touch_nmi_watchdog(); } kdb_set_current_task(save_current_task); return 0; } else { if (argc) { nextarg = 1; diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL); if (diag) return diag; kdb_show_stack(kdb_current_task, (void *)addr); return 0; } else { return kdb_bt1(kdb_current_task, ~0UL, argcount, 0); } } /* NOTREACHED */ return 0; } 1 /include/sound/cs35l33.h parent24c2503255d35c269b67162c397a1a1c1e02f6ce (diff)
x86/mce: Make timer handling more robust
Erik reported that on a preproduction hardware a CMCI storm triggers the BUG_ON in add_timer_on(). The reason is that the per CPU MCE timer is started by the CMCI logic before the MCE CPU hotplug callback starts the timer with add_timer_on(). So the timer is already queued which triggers the BUG. Using add_timer_on() is pretty pointless in this code because the timer is strictlty per CPU, initialized as pinned and all operations which arm the timer happen on the CPU to which the timer belongs. Simplify the whole machinery by using mod_timer() instead of add_timer_on() which avoids the problem because mod_timer() can handle already queued timers. Use __start_timer() everywhere so the earliest armed expiry time is preserved. Reported-by: Erik Veijola <erik.veijola@intel.com> Tested-by: Borislav Petkov <bp@alien8.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@alien8.de> Cc: Tony Luck <tony.luck@intel.com> Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1701310936080.3457@nanos Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Diffstat (limited to 'include/sound/cs35l33.h')