/* * Queued read/write locks * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * (C) Copyright 2013-2014 Hewlett-Packard Development Company, L.P. * * Authors: Waiman Long */ #include #include #include #include #include #include /* * This internal data structure is used for optimizing access to some of * the subfields within the atomic_t cnts. */ struct __qrwlock { union { atomic_t cnts; struct { #ifdef __LITTLE_ENDIAN u8 wmode; /* Writer mode */ u8 rcnts[3]; /* Reader counts */ #else u8 rcnts[3]; /* Reader counts */ u8 wmode; /* Writer mode */ #endif }; }; arch_spinlock_t lock; }; /** * rspin_until_writer_unlock - inc reader count & spin until writer is gone * @lock : Pointer to queue rwlock structure * @writer: Current queue rwlock writer status byte * * In interrupt context or at the head of the queue, the reader will just * increment the reader count & wait until the writer releases the lock. */ static __always_inline void rspin_until_writer_unlock(struct qrwlock *lock, u32 cnts) { while ((cnts & _QW_WMASK) == _QW_LOCKED) { cpu_relax(); cnts = atomic_read_acquire(&lock->cnts); } } /** * queued_read_lock_slowpath - acquire read lock of a queue rwlock * @lock: Pointer to queue rwlock structure * @cnts: Current qrwlock lock value */ void queued_read_lock_slowpath(struct qrwlock *lock, u32 cnts) { /* * Readers come here when they cannot get the lock without waiting */ if (unlikely(in_interrupt())) { /* * Readers in interrupt context will get the lock immediately * if the writer is just waiting (not holding the lock yet). * The rspin_until_writer_unlock() function returns immediately * in this case. Otherwise, they will spin (with ACQUIRE * semantics) until the lock is available without waiting in * the queue. */ rspin_until_writer_unlock(lock, cnts); return; } atomic_sub(_QR_BIAS, &lock->cnts); /* * Put the reader into the wait queue */ arch_spin_lock(&lock->wait_lock); /* * The ACQUIRE semantics of the following spinning code ensure * that accesses can't leak upwards out of our subsequent critical * section in the case that the lock is currently held for write. */ cnts = atomic_fetch_add_acquire(_QR_BIAS, &lock->cnts); rspin_until_writer_unlock(lock, cnts); /* * Signal the next one in queue to become queue head */ arch_spin_unlock(&lock->wait_lock); } EXPORT_SYMBOL(queued_read_lock_slowpath); /** * queued_write_lock_slowpath - acquire write lock of a queue rwlock * @lock : Pointer to queue rwlock structure */ void queued_write_lock_slowpath(struct qrwlock *lock) { u32 cnts; /* Put the writer into the wait queue */ arch_spin_lock(&lock->wait_lock); /* Try to acquire the lock directly if no reader is present */ if (!atomic_read(&lock->cnts) && (atomic_cmpxchg_acquire(&lock->cnts, 0, _QW_LOCKED) == 0)) goto unlock; /* * Set the waiting flag to notify readers that a writer is pending, * or wait for a previous writer to go away. */ for (;;) { struct __qrwlock *l = (struct __qrwlock *)lock; if (!READ_ONCE(l->wmode) && (cmpxchg_relaxed(&l->wmode, 0, _QW_WAITING) == 0)) break; cpu_relax(); } /* When no more readers, set the locked flag */ for (;;) { cnts = atomic_read(&lock->cnts); if ((cnts == _QW_WAITING) && (atomic_cmpxchg_acquire(&lock->cnts, _QW_WAITING, _QW_LOCKED) == _QW_WAITING)) break; cpu_relax(); } unlock: arch_spin_unlock(&lock->wait_lock); } EXPORT_SYMBOL(queued_write_lock_slowpath); s='label'>mode:
authorThomas Gleixner <tglx@linutronix.de>2017-01-31 09:37:34 +0100
committerThomas Gleixner <tglx@linutronix.de>2017-01-31 21:47:58 +0100
commit0becc0ae5b42828785b589f686725ff5bc3b9b25 (patch)
treebe6d0e1f37c38ed0a7dd5da2d4b1e93f0fb43101 /net/rds/tcp_connect.c
parent24c2503255d35c269b67162c397a1a1c1e02f6ce (diff)
x86/mce: Make timer handling more robust
Erik reported that on a preproduction hardware a CMCI storm triggers the BUG_ON in add_timer_on(). The reason is that the per CPU MCE timer is started by the CMCI logic before the MCE CPU hotplug callback starts the timer with add_timer_on(). So the timer is already queued which triggers the BUG. Using add_timer_on() is pretty pointless in this code because the timer is strictlty per CPU, initialized as pinned and all operations which arm the timer happen on the CPU to which the timer belongs. Simplify the whole machinery by using mod_timer() instead of add_timer_on() which avoids the problem because mod_timer() can handle already queued timers. Use __start_timer() everywhere so the earliest armed expiry time is preserved. Reported-by: Erik Veijola <erik.veijola@intel.com> Tested-by: Borislav Petkov <bp@alien8.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@alien8.de> Cc: Tony Luck <tony.luck@intel.com> Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1701310936080.3457@nanos Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Diffstat (limited to 'net/rds/tcp_connect.c')