/*
* The owner field of the rw_semaphore structure will be set to
* RWSEM_READ_OWNED when a reader grabs the lock. A writer will clear
* the owner field when it unlocks. A reader, on the other hand, will
* not touch the owner field when it unlocks.
*
* In essence, the owner field now has the following 3 states:
* 1) 0
* - lock is free or the owner hasn't set the field yet
* 2) RWSEM_READER_OWNED
* - lock is currently or previously owned by readers (lock is free
* or not set by owner yet)
* 3) Other non-zero value
* - a writer owns the lock
*/
#define RWSEM_READER_OWNED ((struct task_struct *)1UL)
#ifdef CONFIG_RWSEM_SPIN_ON_OWNER
/*
* All writes to owner are protected by WRITE_ONCE() to make sure that
* store tearing can't happen as optimistic spinners may read and use
* the owner value concurrently without lock. Read from owner, however,
* may not need READ_ONCE() as long as the pointer value is only used
* for comparison and isn't being dereferenced.
*/
static inline void rwsem_set_owner(struct rw_semaphore *sem)
{
WRITE_ONCE(sem->owner, current);
}
static inline void rwsem_clear_owner(struct rw_semaphore *sem)
{
WRITE_ONCE(sem->owner, NULL);
}
static inline void rwsem_set_reader_owned(struct rw_semaphore *sem)
{
/*
* We check the owner value first to make sure that we will only
* do a write to the rwsem cacheline when it is really necessary
* to minimize cacheline contention.
*/
if (sem->owner != RWSEM_READER_OWNED)
WRITE_ONCE(sem->owner, RWSEM_READER_OWNED);
}
static inline bool rwsem_owner_is_writer(struct task_struct *owner)
{
return owner && owner != RWSEM_READER_OWNED;
}
static inline bool rwsem_owner_is_reader(struct task_struct *owner)
{
return owner == RWSEM_READER_OWNED;
}
#else
static inline void rwsem_set_owner(struct rw_semaphore *sem)
{
}
static inline void rwsem_clear_owner(struct rw_semaphore *sem)
{
}
static inline void rwsem_set_reader_owned(struct rw_semaphore *sem)
{
}
#endif
55fef452d692bf101167914437e848e'>commitdiff
Merge branch 'libnvdimm-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm
Pull DAX updates from Dan Williams:
"The completion of Jan's DAX work for 4.10.
As I mentioned in the libnvdimm-for-4.10 pull request, these are some
final fixes for the DAX dirty-cacheline-tracking invalidation work
that was merged through the -mm, ext4, and xfs trees in -rc1. These
patches were prepared prior to the merge window, but we waited for
4.10-rc1 to have a stable merge base after all the prerequisites were
merged.
Quoting Jan on the overall changes in these patches:
"So I'd like all these 6 patches to go for rc2. The first three
patches fix invalidation of exceptional DAX entries (a bug which
is there for a long time) - without these patches data loss can
occur on power failure even though user called fsync(2). The other
three patches change locking of DAX faults so that ->iomap_begin()
is called in a more relaxed locking context and we are safe to
start a transaction there for ext4"
These have received a build success notification from the kbuild
robot, and pass the latest libnvdimm unit tests. There have not been
any -next releases since -rc1, so they have not appeared there"
* 'libnvdimm-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm:
ext4: Simplify DAX fault path
dax: Call ->iomap_begin without entry lock during dax fault
dax: Finish fault completely when loading holes
dax: Avoid page invalidation races and unnecessary radix tree traversals
mm: Invalidate DAX radix tree entries only if appropriate
ext2: Return BH_New buffers for zeroed blocks