/* * CRC32C *@Article{castagnoli-crc, * author = { Guy Castagnoli and Stefan Braeuer and Martin Herrman}, * title = {{Optimization of Cyclic Redundancy-Check Codes with 24 * and 32 Parity Bits}}, * journal = IEEE Transactions on Communication, * year = {1993}, * volume = {41}, * number = {6}, * pages = {}, * month = {June}, *} * Used by the iSCSI driver, possibly others, and derived from the * the iscsi-crc.c module of the linux-iscsi driver at * http://linux-iscsi.sourceforge.net. * * Following the example of lib/crc32, this function is intended to be * flexible and useful for all users. Modules that currently have their * own crc32c, but hopefully may be able to use this one are: * net/sctp (please add all your doco to here if you change to * use this one!) * * * Copyright (c) 2004 Cisco Systems, Inc. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 2 of the License, or (at your option) * any later version. * */ #include #include #include #include #include #include static struct crypto_shash *tfm; u32 crc32c(u32 crc, const void *address, unsigned int length) { SHASH_DESC_ON_STACK(shash, tfm); u32 *ctx = (u32 *)shash_desc_ctx(shash); int err; shash->tfm = tfm; shash->flags = 0; *ctx = crc; err = crypto_shash_update(shash, address, length); BUG_ON(err); return *ctx; } EXPORT_SYMBOL(crc32c); static int __init libcrc32c_mod_init(void) { tfm = crypto_alloc_shash("crc32c", 0, 0); return PTR_ERR_OR_ZERO(tfm); } static void __exit libcrc32c_mod_fini(void) { crypto_free_shash(tfm); } module_init(libcrc32c_mod_init); module_exit(libcrc32c_mod_fini); MODULE_AUTHOR("Clay Haapala "); MODULE_DESCRIPTION("CRC32c (Castagnoli) calculations"); MODULE_LICENSE("GPL"); MODULE_SOFTDEP("pre: crc32c"); 36f'>commitdiff
diff options
context:
space:
mode:
authorDavid S. Miller <davem@davemloft.net>2017-01-30 14:28:22 -0800
committerDavid S. Miller <davem@davemloft.net>2017-01-30 14:28:22 -0800
commit54791b276b4000b307339f269d3bf7db877d536f (patch)
tree1c2616bd373ce5ea28aac2a53e32f5b5834901ce /net/irda/Kconfig
parent5d0e7705774dd412a465896d08d59a81a345c1e4 (diff)
parent047487241ff59374fded8c477f21453681f5995c (diff)
Merge branch 'sparc64-non-resumable-user-error-recovery'
Liam R. Howlett says: ==================== sparc64: Recover from userspace non-resumable PIO & MEM errors A non-resumable error from userspace is able to cause a kernel panic or trap loop due to the setup and handling of the queued traps once in the kernel. This patch series addresses both of these issues. The queues are fixed by simply zeroing the memory before use. PIO errors from userspace will result in a SIGBUS being sent to the user process. The MEM errors form userspace will result in a SIGKILL and also cause the offending pages to be claimed so they are no longer used in future tasks. SIGKILL is used to ensure that the process does not try to coredump and result in an attempt to read the memory again from within kernel space. Although there is a HV call to scrub the memory (mem_scrub), there is no easy way to guarantee that the real memory address(es) are not used by other tasks. Clearing the error with mem_scrub would zero the memory and cause the other processes to proceed with bad data. The handling of other non-resumable errors remain unchanged and will cause a panic. ==================== Signed-off-by: David S. Miller <davem@davemloft.net>
Diffstat (limited to 'net/irda/Kconfig')