#include #include #include #include static int collect_syscall(struct task_struct *target, long *callno, unsigned long args[6], unsigned int maxargs, unsigned long *sp, unsigned long *pc) { struct pt_regs *regs; if (!try_get_task_stack(target)) { /* Task has no stack, so the task isn't in a syscall. */ *callno = -1; return 0; } regs = task_pt_regs(target); if (unlikely(!regs)) { put_task_stack(target); return -EAGAIN; } *sp = user_stack_pointer(regs); *pc = instruction_pointer(regs); *callno = syscall_get_nr(target, regs); if (*callno != -1L && maxargs > 0) syscall_get_arguments(target, regs, 0, maxargs, args); put_task_stack(target); return 0; } /** * task_current_syscall - Discover what a blocked task is doing. * @target: thread to examine * @callno: filled with system call number or -1 * @args: filled with @maxargs system call arguments * @maxargs: number of elements in @args to fill * @sp: filled with user stack pointer * @pc: filled with user PC * * If @target is blocked in a system call, returns zero with *@callno * set to the the call's number and @args filled in with its arguments. * Registers not used for system call arguments may not be available and * it is not kosher to use &struct user_regset calls while the system * call is still in progress. Note we may get this result if @target * has finished its system call but not yet returned to user mode, such * as when it's stopped for signal handling or syscall exit tracing. * * If @target is blocked in the kernel during a fault or exception, * returns zero with *@callno set to -1 and does not fill in @args. * If so, it's now safe to examine @target using &struct user_regset * get() calls as long as we're sure @target won't return to user mode. * * Returns -%EAGAIN if @target does not remain blocked. * * Returns -%EINVAL if @maxargs is too large (maximum is six). */ int task_current_syscall(struct task_struct *target, long *callno, unsigned long args[6], unsigned int maxargs, unsigned long *sp, unsigned long *pc) { long state; unsigned long ncsw; if (unlikely(maxargs > 6)) return -EINVAL; if (target == current) return collect_syscall(target, callno, args, maxargs, sp, pc); state = target->state; if (unlikely(!state)) return -EAGAIN; ncsw = wait_task_inactive(target, state); if (unlikely(!ncsw) || unlikely(collect_syscall(target, callno, args, maxargs, sp, pc)) || unlikely(wait_task_inactive(target, state) != ncsw)) return -EAGAIN; return 0; } ption value='grep'>log msg
diff options
context:
space:
mode:
authorHelge Deller <deller@gmx.de>2017-01-28 11:52:02 +0100
committerHelge Deller <deller@gmx.de>2017-01-28 21:54:23 +0100
commit2ad5d52d42810bed95100a3d912679d8864421ec (patch)
tree7f93e2f906b1c86f5b76c0f4c0978d41a8a29861 /sound/soc/nuc900/Makefile
parent83b5d1e3d3013dbf90645a5d07179d018c8243fa (diff)
parisc: Don't use BITS_PER_LONG in userspace-exported swab.h header
In swab.h the "#if BITS_PER_LONG > 32" breaks compiling userspace programs if BITS_PER_LONG is #defined by userspace with the sizeof() compiler builtin. Solve this problem by using __BITS_PER_LONG instead. Since we now #include asm/bitsperlong.h avoid further potential userspace pollution by moving the #define of SHIFT_PER_LONG to bitops.h which is not exported to userspace. This patch unbreaks compiling qemu on hppa/parisc. Signed-off-by: Helge Deller <deller@gmx.de> Cc: <stable@vger.kernel.org>
Diffstat (limited to 'sound/soc/nuc900/Makefile')