#include #include #include #include static int collect_syscall(struct task_struct *target, long *callno, unsigned long args[6], unsigned int maxargs, unsigned long *sp, unsigned long *pc) { struct pt_regs *regs; if (!try_get_task_stack(target)) { /* Task has no stack, so the task isn't in a syscall. */ *callno = -1; return 0; } regs = task_pt_regs(target); if (unlikely(!regs)) { put_task_stack(target); return -EAGAIN; } *sp = user_stack_pointer(regs); *pc = instruction_pointer(regs); *callno = syscall_get_nr(target, regs); if (*callno != -1L && maxargs > 0) syscall_get_arguments(target, regs, 0, maxargs, args); put_task_stack(target); return 0; } /** * task_current_syscall - Discover what a blocked task is doing. * @target: thread to examine * @callno: filled with system call number or -1 * @args: filled with @maxargs system call arguments * @maxargs: number of elements in @args to fill * @sp: filled with user stack pointer * @pc: filled with user PC * * If @target is blocked in a system call, returns zero with *@callno * set to the the call's number and @args filled in with its arguments. * Registers not used for system call arguments may not be available and * it is not kosher to use &struct user_regset calls while the system * call is still in progress. Note we may get this result if @target * has finished its system call but not yet returned to user mode, such * as when it's stopped for signal handling or syscall exit tracing. * * If @target is blocked in the kernel during a fault or exception, * returns zero with *@callno set to -1 and does not fill in @args. * If so, it's now safe to examine @target using &struct user_regset * get() calls as long as we're sure @target won't return to user mode. * * Returns -%EAGAIN if @target does not remain blocked. * * Returns -%EINVAL if @maxargs is too large (maximum is six). */ int task_current_syscall(struct task_struct *target, long *callno, unsigned long args[6], unsigned int maxargs, unsigned long *sp, unsigned long *pc) { long state; unsigned long ncsw; if (unlikely(maxargs > 6)) return -EINVAL; if (target == current) return collect_syscall(target, callno, args, maxargs, sp, pc); state = target->state; if (unlikely(!state)) return -EAGAIN; ncsw = wait_task_inactive(target, state); if (unlikely(!ncsw) || unlikely(collect_syscall(target, callno, args, maxargs, sp, pc)) || unlikely(wait_task_inactive(target, state) != ncsw)) return -EAGAIN; return 0; } able>
diff options
context:
space:
mode:
authorDouglas Miller <dougmill@linux.vnet.ibm.com>2017-01-28 06:42:20 -0600
committerTejun Heo <tj@kernel.org>2017-01-28 07:49:42 -0500
commit966d2b04e070bc040319aaebfec09e0144dc3341 (patch)
tree4b96156e3d1dd4dfd6039b7c219c9dc4616da52d /sound/hda/local.h
parent1b1bc42c1692e9b62756323c675a44cb1a1f9dbd (diff)
percpu-refcount: fix reference leak during percpu-atomic transition
percpu_ref_tryget() and percpu_ref_tryget_live() should return "true" IFF they acquire a reference. But the return value from atomic_long_inc_not_zero() is a long and may have high bits set, e.g. PERCPU_COUNT_BIAS, and the return value of the tryget routines is bool so the reference may actually be acquired but the routines return "false" which results in a reference leak since the caller assumes it does not need to do a corresponding percpu_ref_put(). This was seen when performing CPU hotplug during I/O, as hangs in blk_mq_freeze_queue_wait where percpu_ref_kill (blk_mq_freeze_queue_start) raced with percpu_ref_tryget (blk_mq_timeout_work). Sample stack trace: __switch_to+0x2c0/0x450 __schedule+0x2f8/0x970 schedule+0x48/0xc0 blk_mq_freeze_queue_wait+0x94/0x120 blk_mq_queue_reinit_work+0xb8/0x180 blk_mq_queue_reinit_prepare+0x84/0xa0 cpuhp_invoke_callback+0x17c/0x600 cpuhp_up_callbacks+0x58/0x150 _cpu_up+0xf0/0x1c0 do_cpu_up+0x120/0x150 cpu_subsys_online+0x64/0xe0 device_online+0xb4/0x120 online_store+0xb4/0xc0 dev_attr_store+0x68/0xa0 sysfs_kf_write+0x80/0xb0 kernfs_fop_write+0x17c/0x250 __vfs_write+0x6c/0x1e0 vfs_write+0xd0/0x270 SyS_write+0x6c/0x110 system_call+0x38/0xe0 Examination of the queue showed a single reference (no PERCPU_COUNT_BIAS, and __PERCPU_REF_DEAD, __PERCPU_REF_ATOMIC set) and no requests. However, conditions at the time of the race are count of PERCPU_COUNT_BIAS + 0 and __PERCPU_REF_DEAD and __PERCPU_REF_ATOMIC set. The fix is to make the tryget routines use an actual boolean internally instead of the atomic long result truncated to a int. Fixes: e625305b3907 percpu-refcount: make percpu_ref based on longs instead of ints Link: https://bugzilla.kernel.org/show_bug.cgi?id=190751 Signed-off-by: Douglas Miller <dougmill@linux.vnet.ibm.com> Reviewed-by: Jens Axboe <axboe@fb.com> Signed-off-by: Tejun Heo <tj@kernel.org> Fixes: e625305b3907 ("percpu-refcount: make percpu_ref based on longs instead of ints") Cc: stable@vger.kernel.org # v3.18+
Diffstat (limited to 'sound/hda/local.h')