#include #include #include #include static int collect_syscall(struct task_struct *target, long *callno, unsigned long args[6], unsigned int maxargs, unsigned long *sp, unsigned long *pc) { struct pt_regs *regs; if (!try_get_task_stack(target)) { /* Task has no stack, so the task isn't in a syscall. */ *callno = -1; return 0; } regs = task_pt_regs(target); if (unlikely(!regs)) { put_task_stack(target); return -EAGAIN; } *sp = user_stack_pointer(regs); *pc = instruction_pointer(regs); *callno = syscall_get_nr(target, regs); if (*callno != -1L && maxargs > 0) syscall_get_arguments(target, regs, 0, maxargs, args); put_task_stack(target); return 0; } /** * task_current_syscall - Discover what a blocked task is doing. * @target: thread to examine * @callno: filled with system call number or -1 * @args: filled with @maxargs system call arguments * @maxargs: number of elements in @args to fill * @sp: filled with user stack pointer * @pc: filled with user PC * * If @target is blocked in a system call, returns zero with *@callno * set to the the call's number and @args filled in with its arguments. * Registers not used for system call arguments may not be available and * it is not kosher to use &struct user_regset calls while the system * call is still in progress. Note we may get this result if @target * has finished its system call but not yet returned to user mode, such * as when it's stopped for signal handling or syscall exit tracing. * * If @target is blocked in the kernel during a fault or exception, * returns zero with *@callno set to -1 and does not fill in @args. * If so, it's now safe to examine @target using &struct user_regset * get() calls as long as we're sure @target won't return to user mode. * * Returns -%EAGAIN if @target does not remain blocked. * * Returns -%EINVAL if @maxargs is too large (maximum is six). */ int task_current_syscall(struct task_struct *target, long *callno, unsigned long args[6], unsigned int maxargs, unsigned long *sp, unsigned long *pc) { long state; unsigned long ncsw; if (unlikely(maxargs > 6)) return -EINVAL; if (target == current) return collect_syscall(target, callno, args, maxargs, sp, pc); state = target->state; if (unlikely(!state)) return -EAGAIN; ncsw = wait_task_inactive(target, state); if (unlikely(!ncsw) || unlikely(collect_syscall(target, callno, args, maxargs, sp, pc)) || unlikely(wait_task_inactive(target, state) != ncsw)) return -EAGAIN; return 0; } value='1a0bee6c1e788218fd1d141db320db970aace7f0'/>
diff options
context:
space:
mode:
authorSergei Shtylyov <sergei.shtylyov@cogentembedded.com>2017-01-29 15:07:34 +0300
committerDavid S. Miller <davem@davemloft.net>2017-01-30 22:05:43 -0500
commit1a0bee6c1e788218fd1d141db320db970aace7f0 (patch)
tree46c4116bc8ef4a7df718516a648597d9e21c15f1 /tools/perf/Documentation/perf-help.txt
parent63c190429020a9701b42887ac22c28f287f1762f (diff)
sh_eth: rename EESIPR bits
Since the commit b0ca2a21f769 ("sh_eth: Add support of SH7763 to sh_eth") the *enum* declaring the EESIPR bits (interrupt mask) went out of sync with the *enum* declaring the EESR bits (interrupt status) WRT bit naming and formatting. I'd like to restore the consistency by using EESIPR as the bit name prefix, renaming the *enum* to EESIPR_BIT, and (finally) renaming the bits according to the available Renesas SH77{34|63} manuals; additionally, reconstruct couple names using the EESR bit declaration above... Signed-off-by: Sergei Shtylyov <sergei.shtylyov@cogentembedded.com> Signed-off-by: David S. Miller <davem@davemloft.net>
Diffstat (limited to 'tools/perf/Documentation/perf-help.txt')