# # 802.1d Ethernet Bridging # config BRIDGE tristate "802.1d Ethernet Bridging" select LLC select STP depends on IPV6 || IPV6=n ---help--- If you say Y here, then your Linux box will be able to act as an Ethernet bridge, which means that the different Ethernet segments it is connected to will appear as one Ethernet to the participants. Several such bridges can work together to create even larger networks of Ethernets using the IEEE 802.1 spanning tree algorithm. As this is a standard, Linux bridges will cooperate properly with other third party bridge products. In order to use the Ethernet bridge, you'll need the bridge configuration tools; see for location. Please read the Bridge mini-HOWTO for more information. If you enable iptables support along with the bridge support then you turn your bridge into a bridging IP firewall. iptables will then see the IP packets being bridged, so you need to take this into account when setting up your firewall rules. Enabling arptables support when bridging will let arptables see bridged ARP traffic in the arptables FORWARD chain. To compile this code as a module, choose M here: the module will be called bridge. If unsure, say N. config BRIDGE_IGMP_SNOOPING bool "IGMP/MLD snooping" depends on BRIDGE depends on INET default y ---help--- If you say Y here, then the Ethernet bridge will be able selectively forward multicast traffic based on IGMP/MLD traffic received from each port. Say N to exclude this support and reduce the binary size. If unsure, say Y. config BRIDGE_VLAN_FILTERING bool "VLAN filtering" depends on BRIDGE depends on VLAN_8021Q default n ---help--- If you say Y here, then the Ethernet bridge will be able selectively receive and forward traffic based on VLAN information in the packet any VLAN information configured on the bridge port or bridge device. Say N to exclude this support and reduce the binary size. If unsure, say Y. iff
path: root/net/sched/sch_red.c
5bc3b9b25'>devinet.c
diff options
AgeCommit message (Expand)AuthorFilesLines
context:
space:
mode:
authorThomas Gleixner <tglx@linutronix.de>2017-01-31 09:37:34 +0100
committerThomas Gleixner <tglx@linutronix.de>2017-01-31 21:47:58 +0100
commit0becc0ae5b42828785b589f686725ff5bc3b9b25 (patch)
treebe6d0e1f37c38ed0a7dd5da2d4b1e93f0fb43101 /net/ipv4/devinet.c
parent24c2503255d35c269b67162c397a1a1c1e02f6ce (diff)
x86/mce: Make timer handling more robust
Erik reported that on a preproduction hardware a CMCI storm triggers the BUG_ON in add_timer_on(). The reason is that the per CPU MCE timer is started by the CMCI logic before the MCE CPU hotplug callback starts the timer with add_timer_on(). So the timer is already queued which triggers the BUG. Using add_timer_on() is pretty pointless in this code because the timer is strictlty per CPU, initialized as pinned and all operations which arm the timer happen on the CPU to which the timer belongs. Simplify the whole machinery by using mod_timer() instead of add_timer_on() which avoids the problem because mod_timer() can handle already queued timers. Use __start_timer() everywhere so the earliest armed expiry time is preserved. Reported-by: Erik Veijola <erik.veijola@intel.com> Tested-by: Borislav Petkov <bp@alien8.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@alien8.de> Cc: Tony Luck <tony.luck@intel.com> Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1701310936080.3457@nanos Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Diffstat (limited to 'net/ipv4/devinet.c')