/* * Copyright (c) 2007-2017 Nicira, Inc. * * This program is free software; you can redistribute it and/or * modify it under the terms of version 2 of the GNU General Public * License as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA * 02110-1301, USA */ #ifndef FLOW_H #define FLOW_H 1 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct sk_buff; enum sw_flow_mac_proto { MAC_PROTO_NONE = 0, MAC_PROTO_ETHERNET, }; #define SW_FLOW_KEY_INVALID 0x80 /* Store options at the end of the array if they are less than the * maximum size. This allows us to get the benefits of variable length * matching for small options. */ #define TUN_METADATA_OFFSET(opt_len) \ (FIELD_SIZEOF(struct sw_flow_key, tun_opts) - opt_len) #define TUN_METADATA_OPTS(flow_key, opt_len) \ ((void *)((flow_key)->tun_opts + TUN_METADATA_OFFSET(opt_len))) struct ovs_tunnel_info { struct metadata_dst *tun_dst; }; struct vlan_head { __be16 tpid; /* Vlan type. Generally 802.1q or 802.1ad.*/ __be16 tci; /* 0 if no VLAN, VLAN_TAG_PRESENT set otherwise. */ }; #define OVS_SW_FLOW_KEY_METADATA_SIZE \ (offsetof(struct sw_flow_key, recirc_id) + \ FIELD_SIZEOF(struct sw_flow_key, recirc_id)) struct sw_flow_key { u8 tun_opts[IP_TUNNEL_OPTS_MAX]; u8 tun_opts_len; struct ip_tunnel_key tun_key; /* Encapsulating tunnel key. */ struct { u32 priority; /* Packet QoS priority. */ u32 skb_mark; /* SKB mark. */ u16 in_port; /* Input switch port (or DP_MAX_PORTS). */ } __packed phy; /* Safe when right after 'tun_key'. */ u8 mac_proto; /* MAC layer protocol (e.g. Ethernet). */ u8 tun_proto; /* Protocol of encapsulating tunnel. */ u32 ovs_flow_hash; /* Datapath computed hash value. */ u32 recirc_id; /* Recirculation ID. */ struct { u8 src[ETH_ALEN]; /* Ethernet source address. */ u8 dst[ETH_ALEN]; /* Ethernet destination address. */ struct vlan_head vlan; struct vlan_head cvlan; __be16 type; /* Ethernet frame type. */ } eth; union { struct { __be32 top_lse; /* top label stack entry */ } mpls; struct { u8 proto; /* IP protocol or lower 8 bits of ARP opcode. */ u8 tos; /* IP ToS. */ u8 ttl; /* IP TTL/hop limit. */ u8 frag; /* One of OVS_FRAG_TYPE_*. */ } ip; }; struct { __be16 src; /* TCP/UDP/SCTP source port. */ __be16 dst; /* TCP/UDP/SCTP destination port. */ __be16 flags; /* TCP flags. */ } tp; union { struct { struct { __be32 src; /* IP source address. */ __be32 dst; /* IP destination address. */ } addr; union { struct { __be32 src; __be32 dst; } ct_orig; /* Conntrack original direction fields. */ struct { u8 sha[ETH_ALEN]; /* ARP source hardware address. */ u8 tha[ETH_ALEN]; /* ARP target hardware address. */ } arp; }; } ipv4; struct { struct { struct in6_addr src; /* IPv6 source address. */ struct in6_addr dst; /* IPv6 destination address. */ } addr; __be32 label; /* IPv6 flow label. */ union { struct { struct in6_addr src; struct in6_addr dst; } ct_orig; /* Conntrack original direction fields. */ struct { struct in6_addr target; /* ND target address. */ u8 sll[ETH_ALEN]; /* ND source link layer address. */ u8 tll[ETH_ALEN]; /* ND target link layer address. */ } nd; }; } ipv6; }; struct { /* Connection tracking fields. */ u8 state; u8 orig_proto; /* CT orig tuple IP protocol. */ u16 zone; u32 mark; struct { __be16 src; /* CT orig tuple tp src port. */ __be16 dst; /* CT orig tuple tp dst port. */ } orig_tp; struct ovs_key_ct_labels labels; } ct; } __aligned(BITS_PER_LONG/8); /* Ensure that we can do comparisons as longs. */ static inline bool sw_flow_key_is_nd(const struct sw_flow_key *key) { return key->eth.type == htons(ETH_P_IPV6) && key->ip.proto == NEXTHDR_ICMP && key->tp.dst == 0 && (key->tp.src == htons(NDISC_NEIGHBOUR_SOLICITATION) || key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)); } struct sw_flow_key_range { unsigned short int start; unsigned short int end; }; struct sw_flow_mask { int ref_count; struct rcu_head rcu; struct list_head list; struct sw_flow_key_range range; struct sw_flow_key key; }; struct sw_flow_match { struct sw_flow_key *key; struct sw_flow_key_range range; struct sw_flow_mask *mask; }; #define MAX_UFID_LENGTH 16 /* 128 bits */ struct sw_flow_id { u32 ufid_len; union { u32 ufid[MAX_UFID_LENGTH / 4]; struct sw_flow_key *unmasked_key; }; }; struct sw_flow_actions { struct rcu_head rcu; size_t orig_len; /* From flow_cmd_new netlink actions size */ u32 actions_len; struct nlattr actions[]; }; struct flow_stats { u64 packet_count; /* Number of packets matched. */ u64 byte_count; /* Number of bytes matched. */ unsigned long used; /* Last used time (in jiffies). */ spinlock_t lock; /* Lock for atomic stats update. */ __be16 tcp_flags; /* Union of seen TCP flags. */ }; struct sw_flow { struct rcu_head rcu; struct { struct hlist_node node[2]; u32 hash; } flow_table, ufid_table; int stats_last_writer; /* CPU id of the last writer on * 'stats[0]'. */ struct sw_flow_key key; struct sw_flow_id id; struct sw_flow_mask *mask; struct sw_flow_actions __rcu *sf_acts; struct flow_stats __rcu *stats[]; /* One for each CPU. First one * is allocated at flow creation time, * the rest are allocated on demand * while holding the 'stats[0].lock'. */ }; struct arp_eth_header { __be16 ar_hrd; /* format of hardware address */ __be16 ar_pro; /* format of protocol address */ unsigned char ar_hln; /* length of hardware address */ unsigned char ar_pln; /* length of protocol address */ __be16 ar_op; /* ARP opcode (command) */ /* Ethernet+IPv4 specific members. */ unsigned char ar_sha[ETH_ALEN]; /* sender hardware address */ unsigned char ar_sip[4]; /* sender IP address */ unsigned char ar_tha[ETH_ALEN]; /* target hardware address */ unsigned char ar_tip[4]; /* target IP address */ } __packed; static inline u8 ovs_key_mac_proto(const struct sw_flow_key *key) { return key->mac_proto & ~SW_FLOW_KEY_INVALID; } static inline u16 __ovs_mac_header_len(u8 mac_proto) { return mac_proto == MAC_PROTO_ETHERNET ? ETH_HLEN : 0; } static inline u16 ovs_mac_header_len(const struct sw_flow_key *key) { return __ovs_mac_header_len(ovs_key_mac_proto(key)); } static inline bool ovs_identifier_is_ufid(const struct sw_flow_id *sfid) { return sfid->ufid_len; } static inline bool ovs_identifier_is_key(const struct sw_flow_id *sfid) { return !ovs_identifier_is_ufid(sfid); } void ovs_flow_stats_update(struct sw_flow *, __be16 tcp_flags, const struct sk_buff *); void ovs_flow_stats_get(const struct sw_flow *, struct ovs_flow_stats *, unsigned long *used, __be16 *tcp_flags); void ovs_flow_stats_clear(struct sw_flow *); u64 ovs_flow_used_time(unsigned long flow_jiffies); int ovs_flow_key_update(struct sk_buff *skb, struct sw_flow_key *key); int ovs_flow_key_extract(const struct ip_tunnel_info *tun_info, struct sk_buff *skb, struct sw_flow_key *key); /* Extract key from packet coming from userspace. */ int ovs_flow_key_extract_userspace(struct net *net, const struct nlattr *attr, struct sk_buff *skb, struct sw_flow_key *key, bool log); #endif /* flow.h */