/* * linux/net/sunrpc/gss_krb5_crypto.c * * Copyright (c) 2000-2008 The Regents of the University of Michigan. * All rights reserved. * * Andy Adamson <andros@umich.edu> * Bruce Fields <bfields@umich.edu> */ /* * Copyright (C) 1998 by the FundsXpress, INC. * * All rights reserved. * * Export of this software from the United States of America may require * a specific license from the United States Government. It is the * responsibility of any person or organization contemplating export to * obtain such a license before exporting. * * WITHIN THAT CONSTRAINT, permission to use, copy, modify, and * distribute this software and its documentation for any purpose and * without fee is hereby granted, provided that the above copyright * notice appear in all copies and that both that copyright notice and * this permission notice appear in supporting documentation, and that * the name of FundsXpress. not be used in advertising or publicity pertaining * to distribution of the software without specific, written prior * permission. FundsXpress makes no representations about the suitability of * this software for any purpose. It is provided "as is" without express * or implied warranty. * * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE. */ #include <crypto/hash.h> #include <crypto/skcipher.h> #include <linux/err.h> #include <linux/types.h> #include <linux/mm.h> #include <linux/scatterlist.h> #include <linux/highmem.h> #include <linux/pagemap.h> #include <linux/random.h> #include <linux/sunrpc/gss_krb5.h> #include <linux/sunrpc/xdr.h> #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) # define RPCDBG_FACILITY RPCDBG_AUTH #endif u32 krb5_encrypt( struct crypto_skcipher *tfm, void * iv, void * in, void * out, int length) { u32 ret = -EINVAL; struct scatterlist sg[1]; u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0}; SKCIPHER_REQUEST_ON_STACK(req, tfm); if (length % crypto_skcipher_blocksize(tfm) != 0) goto out; if (crypto_skcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) { dprintk("RPC: gss_k5encrypt: tfm iv size too large %d\n", crypto_skcipher_ivsize(tfm)); goto out; } if (iv) memcpy(local_iv, iv, crypto_skcipher_ivsize(tfm)); memcpy(out, in, length); sg_init_one(sg, out, length); skcipher_request_set_tfm(req, tfm); skcipher_request_set_callback(req, 0, NULL, NULL); skcipher_request_set_crypt(req, sg, sg, length, local_iv); ret = crypto_skcipher_encrypt(req); skcipher_request_zero(req); out: dprintk("RPC: krb5_encrypt returns %d\n", ret); return ret; } u32 krb5_decrypt( struct crypto_skcipher *tfm, void * iv, void * in, void * out, int length) { u32 ret = -EINVAL; struct scatterlist sg[1]; u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0}; SKCIPHER_REQUEST_ON_STACK(req, tfm); if (length % crypto_skcipher_blocksize(tfm) != 0) goto out; if (crypto_skcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) { dprintk("RPC: gss_k5decrypt: tfm iv size too large %d\n", crypto_skcipher_ivsize(tfm)); goto out; } if (iv) memcpy(local_iv,iv, crypto_skcipher_ivsize(tfm)); memcpy(out, in, length); sg_init_one(sg, out, length); skcipher_request_set_tfm(req, tfm); skcipher_request_set_callback(req, 0, NULL, NULL); skcipher_request_set_crypt(req, sg, sg, length, local_iv); ret = crypto_skcipher_decrypt(req); skcipher_request_zero(req); out: dprintk("RPC: gss_k5decrypt returns %d\n",ret); return ret; } static int checksummer(struct scatterlist *sg, void *data) { struct ahash_request *req = data; ahash_request_set_crypt(req, sg, NULL, sg->length); return crypto_ahash_update(req); } static int arcfour_hmac_md5_usage_to_salt(unsigned int usage, u8 salt[4]) { unsigned int ms_usage; switch (usage) { case KG_USAGE_SIGN: ms_usage = 15; break; case KG_USAGE_SEAL: ms_usage = 13; break; default: return -EINVAL; } salt[0] = (ms_usage >> 0) & 0xff; salt[1] = (ms_usage >> 8) & 0xff; salt[2] = (ms_usage >> 16) & 0xff; salt[3] = (ms_usage >> 24) & 0xff; return 0; } static u32 make_checksum_hmac_md5(struct krb5_ctx *kctx, char *header, int hdrlen, struct xdr_buf *body, int body_offset, u8 *cksumkey, unsigned int usage, struct xdr_netobj *cksumout) { struct scatterlist sg[1]; int err = -1; u8 *checksumdata; u8 rc4salt[4]; struct crypto_ahash *md5; struct crypto_ahash *hmac_md5; struct ahash_request *req; if (cksumkey == NULL) return GSS_S_FAILURE; if (cksumout->len < kctx->gk5e->cksumlength) { dprintk("%s: checksum buffer length, %u, too small for %s\n", __func__, cksumout->len, kctx->gk5e->name); return GSS_S_FAILURE; } if (arcfour_hmac_md5_usage_to_salt(usage, rc4salt)) { dprintk("%s: invalid usage value %u\n", __func__, usage); return GSS_S_FAILURE; } checksumdata = kmalloc(GSS_KRB5_MAX_CKSUM_LEN, GFP_NOFS); if (!checksumdata) return GSS_S_FAILURE; md5 = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); if (IS_ERR(md5)) goto out_free_cksum; hmac_md5 = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0, CRYPTO_ALG_ASYNC); if (IS_ERR(hmac_md5)) goto out_free_md5; req = ahash_request_alloc(md5, GFP_NOFS); if (!req) goto out_free_hmac_md5; ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL); err = crypto_ahash_init(req); if (err) goto out; sg_init_one(sg, rc4salt, 4); ahash_request_set_crypt(req, sg, NULL, 4); err = crypto_ahash_update(req); if (err) goto out; sg_init_one(sg, header, hdrlen); ahash_request_set_crypt(req, sg, NULL, hdrlen); err = crypto_ahash_update(req); if (err) goto out; err = xdr_process_buf(body, body_offset, body->len - body_offset, checksummer, req); if (err) goto out; ahash_request_set_crypt(req, NULL, checksumdata, 0); err = crypto_ahash_final(req); if (err) goto out; ahash_request_free(req); req = ahash_request_alloc(hmac_md5, GFP_NOFS); if (!req) goto out_free_hmac_md5; ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL); err = crypto_ahash_init(req); if (err) goto out; err = crypto_ahash_setkey(hmac_md5, cksumkey, kctx->gk5e->keylength); if (err) goto out; sg_init_one(sg, checksumdata, crypto_ahash_digestsize(md5)); ahash_request_set_crypt(req, sg, checksumdata, crypto_ahash_digestsize(md5)); err = crypto_ahash_digest(req); if (err) goto out; memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength); cksumout->len = kctx->gk5e->cksumlength; out: ahash_request_free(req); out_free_hmac_md5: crypto_free_ahash(hmac_md5); out_free_md5: crypto_free_ahash(md5); out_free_cksum: kfree(checksumdata); return err ? GSS_S_FAILURE : 0; } /* * checksum the plaintext data and hdrlen bytes of the token header * The checksum is performed over the first 8 bytes of the * gss token header and then over the data body */ u32 make_checksum(struct krb5_ctx *kctx, char *header, int hdrlen, struct xdr_buf *body, int body_offset, u8 *cksumkey, unsigned int usage, struct xdr_netobj *cksumout) { struct crypto_ahash *tfm; struct ahash_request *req; struct scatterlist sg[1]; int err = -1; u8 *checksumdata; unsigned int checksumlen; if (kctx->gk5e->ctype == CKSUMTYPE_HMAC_MD5_ARCFOUR) return make_checksum_hmac_md5(kctx, header, hdrlen, body, body_offset, cksumkey, usage, cksumout); if (cksumout->len < kctx->gk5e->cksumlength) { dprintk("%s: checksum buffer length, %u, too small for %s\n", __func__, cksumout->len, kctx->gk5e->name); return GSS_S_FAILURE; } checksumdata = kmalloc(GSS_KRB5_MAX_CKSUM_LEN, GFP_NOFS); if (checksumdata == NULL) return GSS_S_FAILURE; tfm = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0, CRYPTO_ALG_ASYNC); if (IS_ERR(tfm)) goto out_free_cksum; req = ahash_request_alloc(tfm, GFP_NOFS); if (!req) goto out_free_ahash; ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL); checksumlen = crypto_ahash_digestsize(tfm); if (cksumkey != NULL) { err = crypto_ahash_setkey(tfm, cksumkey, kctx->gk5e->keylength); if (err) goto out; } err = crypto_ahash_init(req); if (err) goto out; sg_init_one(sg, header, hdrlen); ahash_request_set_crypt(req, sg, NULL, hdrlen); err = crypto_ahash_update(req); if (err) goto out; err = xdr_process_buf(body, body_offset, body->len - body_offset, checksummer, req); if (err) goto out; ahash_request_set_crypt(req, NULL, checksumdata, 0); err = crypto_ahash_final(req); if (err) goto out; switch (kctx->gk5e->ctype) { case CKSUMTYPE_RSA_MD5: err = kctx->gk5e->encrypt(kctx->seq, NULL, checksumdata, checksumdata, checksumlen); if (err) goto out; memcpy(cksumout->data, checksumdata + checksumlen - kctx->gk5e->cksumlength, kctx->gk5e->cksumlength); break; case CKSUMTYPE_HMAC_SHA1_DES3: memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength); break; default: BUG(); break; } cksumout->len = kctx->gk5e->cksumlength; out: ahash_request_free(req); out_free_ahash: crypto_free_ahash(tfm); out_free_cksum: kfree(checksumdata); return err ? GSS_S_FAILURE : 0; } /* * checksum the plaintext data and hdrlen bytes of the token header * Per rfc4121, sec. 4.2.4, the checksum is performed over the data * body then over the first 16 octets of the MIC token * Inclusion of the header data in the calculation of the * checksum is optional. */ u32 make_checksum_v2(struct krb5_ctx *kctx, char *header, int hdrlen, struct xdr_buf *body, int body_offset, u8 *cksumkey, unsigned int usage, struct xdr_netobj *cksumout) { struct crypto_ahash *tfm; struct ahash_request *req; struct scatterlist sg[1]; int err = -1; u8 *checksumdata; unsigned int checksumlen; if (kctx->gk5e->keyed_cksum == 0) { dprintk("%s: expected keyed hash for %s\n", __func__, kctx->gk5e->name); return GSS_S_FAILURE; } if (cksumkey == NULL) { dprintk("%s: no key supplied for %s\n", __func__, kctx->gk5e->name); return GSS_S_FAILURE; } checksumdata = kmalloc(GSS_KRB5_MAX_CKSUM_LEN, GFP_NOFS); if (!checksumdata) return GSS_S_FAILURE; tfm = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0, CRYPTO_ALG_ASYNC); if (IS_ERR(tfm)) goto out_free_cksum; checksumlen = crypto_ahash_digestsize(tfm); req = ahash_request_alloc(tfm, GFP_NOFS); if (!req) goto out_free_ahash; ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL); err = crypto_ahash_setkey(tfm, cksumkey, kctx->gk5e->keylength); if (err) goto out; err = crypto_ahash_init(req); if (err) goto out; err = xdr_process_buf(body, body_offset, body->len - body_offset, checksummer, req); if (err) goto out; if (header != NULL) { sg_init_one(sg, header, hdrlen); ahash_request_set_crypt(req, sg, NULL, hdrlen); err = crypto_ahash_update(req); if (err) goto out; } ahash_request_set_crypt(req, NULL, checksumdata, 0); err = crypto_ahash_final(req); if (err) goto out; cksumout->len = kctx->gk5e->cksumlength; switch (kctx->gk5e->ctype) { case CKSUMTYPE_HMAC_SHA1_96_AES128: case CKSUMTYPE_HMAC_SHA1_96_AES256: /* note that this truncates the hash */ memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength); break; default: BUG(); break; } out: ahash_request_free(req); out_free_ahash: crypto_free_ahash(tfm); out_free_cksum: kfree(checksumdata); return err ? GSS_S_FAILURE : 0; } struct encryptor_desc { u8 iv[GSS_KRB5_MAX_BLOCKSIZE]; struct skcipher_request *req; int pos; struct xdr_buf *outbuf; struct page **pages; struct scatterlist infrags[4]; struct scatterlist outfrags[4]; int fragno; int fraglen; }; static int encryptor(struct scatterlist *sg, void *data) { struct encryptor_desc *desc = data; struct xdr_buf *outbuf = desc->outbuf; struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(desc->req); struct page *in_page; int thislen = desc->fraglen + sg->length; int fraglen, ret; int page_pos; /* Worst case is 4 fragments: head, end of page 1, start * of page 2, tail. Anything more is a bug. */ BUG_ON(desc->fragno > 3); page_pos = desc->pos - outbuf->head[0].iov_len; if (page_pos >= 0 && page_pos < outbuf->page_len) { /* pages are not in place: */ int i = (page_pos + outbuf->page_base) >> PAGE_SHIFT; in_page = desc->pages[i]; } else { in_page = sg_page(sg); } sg_set_page(&desc->infrags[desc->fragno], in_page, sg->length, sg->offset); sg_set_page(&desc->outfrags[desc->fragno], sg_page(sg), sg->length, sg->offset); desc->fragno++; desc->fraglen += sg->length; desc->pos += sg->length; fraglen = thislen & (crypto_skcipher_blocksize(tfm) - 1); thislen -= fraglen; if (thislen == 0) return 0; sg_mark_end(&desc->infrags[desc->fragno - 1]); sg_mark_end(&desc->outfrags[desc->fragno - 1]); skcipher_request_set_crypt(desc->req, desc->infrags, desc->outfrags, thislen, desc->iv); ret = crypto_skcipher_encrypt(desc->req); if (ret) return ret; sg_init_table(desc->infrags, 4); sg_init_table(desc->outfrags, 4); if (fraglen) { sg_set_page(&desc->outfrags[0], sg_page(sg), fraglen, sg->offset + sg->length - fraglen); desc->infrags[0] = desc->outfrags[0]; sg_assign_page(&desc->infrags[0], in_page); desc->fragno = 1; desc->fraglen = fraglen; } else { desc->fragno = 0; desc->fraglen = 0; } return 0; } int gss_encrypt_xdr_buf(struct crypto_skcipher *tfm, struct xdr_buf *buf, int offset, struct page **pages) { int ret; struct encryptor_desc desc; SKCIPHER_REQUEST_ON_STACK(req, tfm); BUG_ON((buf->len - offset) % crypto_skcipher_blocksize(tfm) != 0); skcipher_request_set_tfm(req, tfm); skcipher_request_set_callback(req, 0, NULL, NULL); memset(desc.iv, 0, sizeof(desc.iv)); desc.req = req; desc.pos = offset; desc.outbuf = buf; desc.pages = pages; desc.fragno = 0; desc.fraglen = 0; sg_init_table(desc.infrags, 4); sg_init_table(desc.outfrags, 4); ret = xdr_process_buf(buf, offset, buf->len - offset, encryptor, &desc); skcipher_request_zero(req); return ret; } struct decryptor_desc { u8 iv[GSS_KRB5_MAX_BLOCKSIZE]; struct skcipher_request *req; struct scatterlist frags[4]; int fragno; int fraglen; }; static int decryptor(struct scatterlist *sg, void *data) { struct decryptor_desc *desc = data; int thislen = desc->fraglen + sg->length; struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(desc->req); int fraglen, ret; /* Worst case is 4 fragments: head, end of page 1, start * of page 2, tail. Anything more is a bug. */ BUG_ON(desc->fragno > 3); sg_set_page(&desc->frags[desc->fragno], sg_page(sg), sg->length, sg->offset); desc->fragno++; desc->fraglen += sg->length; fraglen = thislen & (crypto_skcipher_blocksize(tfm) - 1); thislen -= fraglen; if (thislen == 0) return 0; sg_mark_end(&desc->frags[desc->fragno - 1]); skcipher_request_set_crypt(desc->req, desc->frags, desc->frags, thislen, desc->iv); ret = crypto_skcipher_decrypt(desc->req); if (ret) return ret; sg_init_table(desc->frags, 4); if (fraglen) { sg_set_page(&desc->frags[0], sg_page(sg), fraglen, sg->offset + sg->length - fraglen); desc->fragno = 1; desc->fraglen = fraglen; } else { desc->fragno = 0; desc->fraglen = 0; } return 0; } int gss_decrypt_xdr_buf(struct crypto_skcipher *tfm, struct xdr_buf *buf, int offset) { int ret; struct decryptor_desc desc; SKCIPHER_REQUEST_ON_STACK(req, tfm); /* XXXJBF: */ BUG_ON((buf->len - offset) % crypto_skcipher_blocksize(tfm) != 0); skcipher_request_set_tfm(req, tfm); skcipher_request_set_callback(req, 0, NULL, NULL); memset(desc.iv, 0, sizeof(desc.iv)); desc.req = req; desc.fragno = 0; desc.fraglen = 0; sg_init_table(desc.frags, 4); ret = xdr_process_buf(buf, offset, buf->len - offset, decryptor, &desc); skcipher_request_zero(req); return ret; } /* * This function makes the assumption that it was ultimately called * from gss_wrap(). * * The client auth_gss code moves any existing tail data into a * separate page before calling gss_wrap. * The server svcauth_gss code ensures that both the head and the * tail have slack space of RPC_MAX_AUTH_SIZE before calling gss_wrap. * * Even with that guarantee, this function may be called more than * once in the processing of gss_wrap(). The best we can do is * verify at compile-time (see GSS_KRB5_SLACK_CHECK) that the * largest expected shift will fit within RPC_MAX_AUTH_SIZE. * At run-time we can verify that a single invocation of this * function doesn't attempt to use more the RPC_MAX_AUTH_SIZE. */ int xdr_extend_head(struct xdr_buf *buf, unsigned int base, unsigned int shiftlen) { u8 *p; if (shiftlen == 0) return 0; BUILD_BUG_ON(GSS_KRB5_MAX_SLACK_NEEDED > RPC_MAX_AUTH_SIZE); BUG_ON(shiftlen > RPC_MAX_AUTH_SIZE); p = buf->head[0].iov_base + base; memmove(p + shiftlen, p, buf->head[0].iov_len - base); buf->head[0].iov_len += shiftlen; buf->len += shiftlen; return 0; } static u32 gss_krb5_cts_crypt(struct crypto_skcipher *cipher, struct xdr_buf *buf, u32 offset, u8 *iv, struct page **pages, int encrypt) { u32 ret; struct scatterlist sg[1]; SKCIPHER_REQUEST_ON_STACK(req, cipher); u8 *data; struct page **save_pages; u32 len = buf->len - offset; if (len > GSS_KRB5_MAX_BLOCKSIZE * 2) { WARN_ON(0); return -ENOMEM; } data = kmalloc(GSS_KRB5_MAX_BLOCKSIZE * 2, GFP_NOFS); if (!data) return -ENOMEM; /* * For encryption, we want to read from the cleartext * page cache pages, and write the encrypted data to * the supplied xdr_buf pages. */ save_pages = buf->pages; if (encrypt) buf->pages = pages; ret = read_bytes_from_xdr_buf(buf, offset, data, len); buf->pages = save_pages; if (ret) goto out; sg_init_one(sg, data, len); skcipher_request_set_tfm(req, cipher); skcipher_request_set_callback(req, 0, NULL, NULL); skcipher_request_set_crypt(req, sg, sg, len, iv); if (encrypt) ret = crypto_skcipher_encrypt(req); else ret = crypto_skcipher_decrypt(req); skcipher_request_zero(req); if (ret) goto out; ret = write_bytes_to_xdr_buf(buf, offset, data, len); out: kfree(data); return ret; } u32 gss_krb5_aes_encrypt(struct krb5_ctx *kctx, u32 offset, struct xdr_buf *buf, struct page **pages) { u32 err; struct xdr_netobj hmac; u8 *cksumkey; u8 *ecptr; struct crypto_skcipher *cipher, *aux_cipher; int blocksize; struct page **save_pages; int nblocks, nbytes; struct encryptor_desc desc; u32 cbcbytes; unsigned int usage; if (kctx->initiate) { cipher = kctx->initiator_enc; aux_cipher = kctx->initiator_enc_aux; cksumkey = kctx->initiator_integ; usage = KG_USAGE_INITIATOR_SEAL; } else { cipher = kctx->acceptor_enc; aux_cipher = kctx->acceptor_enc_aux; cksumkey = kctx->acceptor_integ; usage = KG_USAGE_ACCEPTOR_SEAL; } blocksize = crypto_skcipher_blocksize(cipher); /* hide the gss token header and insert the confounder */ offset += GSS_KRB5_TOK_HDR_LEN; if (xdr_extend_head(buf, offset, kctx->gk5e->conflen)) return GSS_S_FAILURE; gss_krb5_make_confounder(buf->head[0].iov_base + offset, kctx->gk5e->conflen); offset -= GSS_KRB5_TOK_HDR_LEN; if (buf->tail[0].iov_base != NULL) { ecptr = buf->tail[0].iov_base + buf->tail[0].iov_len; } else { buf->tail[0].iov_base = buf->head[0].iov_base + buf->head[0].iov_len; buf->tail[0].iov_len = 0; ecptr = buf->tail[0].iov_base; } /* copy plaintext gss token header after filler (if any) */ memcpy(ecptr, buf->head[0].iov_base + offset, GSS_KRB5_TOK_HDR_LEN); buf->tail[0].iov_len += GSS_KRB5_TOK_HDR_LEN; buf->len += GSS_KRB5_TOK_HDR_LEN; /* Do the HMAC */ hmac.len = GSS_KRB5_MAX_CKSUM_LEN; hmac.data = buf->tail[0].iov_base + buf->tail[0].iov_len; /* * When we are called, pages points to the real page cache * data -- which we can't go and encrypt! buf->pages points * to scratch pages which we are going to send off to the * client/server. Swap in the plaintext pages to calculate * the hmac. */ save_pages = buf->pages; buf->pages = pages; err = make_checksum_v2(kctx, NULL, 0, buf, offset + GSS_KRB5_TOK_HDR_LEN, cksumkey, usage, &hmac); buf->pages = save_pages; if (err) return GSS_S_FAILURE; nbytes = buf->len - offset - GSS_KRB5_TOK_HDR_LEN; nblocks = (nbytes + blocksize - 1) / blocksize; cbcbytes = 0; if (nblocks > 2) cbcbytes = (nblocks - 2) * blocksize; memset(desc.iv, 0, sizeof(desc.iv)); if (cbcbytes) { SKCIPHER_REQUEST_ON_STACK(req, aux_cipher); desc.pos = offset + GSS_KRB5_TOK_HDR_LEN; desc.fragno = 0; desc.fraglen = 0; desc.pages = pages; desc.outbuf = buf; desc.req = req; skcipher_request_set_tfm(req, aux_cipher); skcipher_request_set_callback(req, 0, NULL, NULL); sg_init_table(desc.infrags, 4); sg_init_table(desc.outfrags, 4); err = xdr_process_buf(buf, offset + GSS_KRB5_TOK_HDR_LEN, cbcbytes, encryptor, &desc); skcipher_request_zero(req); if (err) goto out_err; } /* Make sure IV carries forward from any CBC results. */ err = gss_krb5_cts_crypt(cipher, buf, offset + GSS_KRB5_TOK_HDR_LEN + cbcbytes, desc.iv, pages, 1); if (err) { err = GSS_S_FAILURE; goto out_err; } /* Now update buf to account for HMAC */ buf->tail[0].iov_len += kctx->gk5e->cksumlength; buf->len += kctx->gk5e->cksumlength; out_err: if (err) err = GSS_S_FAILURE; return err; } u32 gss_krb5_aes_decrypt(struct krb5_ctx *kctx, u32 offset, struct xdr_buf *buf, u32 *headskip, u32 *tailskip) { struct xdr_buf subbuf; u32 ret = 0; u8 *cksum_key; struct crypto_skcipher *cipher, *aux_cipher; struct xdr_netobj our_hmac_obj; u8 our_hmac[GSS_KRB5_MAX_CKSUM_LEN]; u8 pkt_hmac[GSS_KRB5_MAX_CKSUM_LEN]; int nblocks, blocksize, cbcbytes; struct decryptor_desc desc; unsigned int usage; if (kctx->initiate) { cipher = kctx->acceptor_enc; aux_cipher = kctx->acceptor_enc_aux; cksum_key = kctx->acceptor_integ; usage = KG_USAGE_ACCEPTOR_SEAL; } else { cipher = kctx->initiator_enc; aux_cipher = kctx->initiator_enc_aux; cksum_key = kctx->initiator_integ; usage = KG_USAGE_INITIATOR_SEAL; } blocksize = crypto_skcipher_blocksize(cipher); /* create a segment skipping the header and leaving out the checksum */ xdr_buf_subsegment(buf, &subbuf, offset + GSS_KRB5_TOK_HDR_LEN, (buf->len - offset - GSS_KRB5_TOK_HDR_LEN - kctx->gk5e->cksumlength)); nblocks = (subbuf.len + blocksize - 1) / blocksize; cbcbytes = 0; if (nblocks > 2) cbcbytes = (nblocks - 2) * blocksize; memset(desc.iv, 0, sizeof(desc.iv)); if (cbcbytes) { SKCIPHER_REQUEST_ON_STACK(req, aux_cipher); desc.fragno = 0; desc.fraglen = 0; desc.req = req; skcipher_request_set_tfm(req, aux_cipher); skcipher_request_set_callback(req, 0, NULL, NULL); sg_init_table(desc.frags, 4); ret = xdr_process_buf(&subbuf, 0, cbcbytes, decryptor, &desc); skcipher_request_zero(req); if (ret) goto out_err; } /* Make sure IV carries forward from any CBC results. */ ret = gss_krb5_cts_crypt(cipher, &subbuf, cbcbytes, desc.iv, NULL, 0); if (ret) goto out_err; /* Calculate our hmac over the plaintext data */ our_hmac_obj.len = sizeof(our_hmac); our_hmac_obj.data = our_hmac; ret = make_checksum_v2(kctx, NULL, 0, &subbuf, 0, cksum_key, usage, &our_hmac_obj); if (ret) goto out_err; /* Get the packet's hmac value */ ret = read_bytes_from_xdr_buf(buf, buf->len - kctx->gk5e->cksumlength, pkt_hmac, kctx->gk5e->cksumlength); if (ret) goto out_err; if (memcmp(pkt_hmac, our_hmac, kctx->gk5e->cksumlength) != 0) { ret = GSS_S_BAD_SIG; goto out_err; } *headskip = kctx->gk5e->conflen; *tailskip = kctx->gk5e->cksumlength; out_err: if (ret && ret != GSS_S_BAD_SIG) ret = GSS_S_FAILURE; return ret; } /* * Compute Kseq given the initial session key and the checksum. * Set the key of the given cipher. */ int krb5_rc4_setup_seq_key(struct krb5_ctx *kctx, struct crypto_skcipher *cipher, unsigned char *cksum) { struct crypto_shash *hmac; struct shash_desc *desc; u8 Kseq[GSS_KRB5_MAX_KEYLEN]; u32 zeroconstant = 0; int err; dprintk("%s: entered\n", __func__); hmac = crypto_alloc_shash(kctx->gk5e->cksum_name, 0, 0); if (IS_ERR(hmac)) { dprintk("%s: error %ld, allocating hash '%s'\n", __func__, PTR_ERR(hmac), kctx->gk5e->cksum_name); return PTR_ERR(hmac); } desc = kmalloc(sizeof(*desc) + crypto_shash_descsize(hmac), GFP_NOFS); if (!desc) { dprintk("%s: failed to allocate shash descriptor for '%s'\n", __func__, kctx->gk5e->cksum_name); crypto_free_shash(hmac); return -ENOMEM; } desc->tfm = hmac; desc->flags = 0; /* Compute intermediate Kseq from session key */ err = crypto_shash_setkey(hmac, kctx->Ksess, kctx->gk5e->keylength); if (err) goto out_err; err = crypto_shash_digest(desc, (u8 *)&zeroconstant, 4, Kseq); if (err) goto out_err; /* Compute final Kseq from the checksum and intermediate Kseq */ err = crypto_shash_setkey(hmac, Kseq, kctx->gk5e->keylength); if (err) goto out_err; err = crypto_shash_digest(desc, cksum, 8, Kseq); if (err) goto out_err; err = crypto_skcipher_setkey(cipher, Kseq, kctx->gk5e->keylength); if (err) goto out_err; err = 0; out_err: kzfree(desc); crypto_free_shash(hmac); dprintk("%s: returning %d\n", __func__, err); return err; } /* * Compute Kcrypt given the initial session key and the plaintext seqnum. * Set the key of cipher kctx->enc. */ int krb5_rc4_setup_enc_key(struct krb5_ctx *kctx, struct crypto_skcipher *cipher, s32 seqnum) { struct crypto_shash *hmac; struct shash_desc *desc; u8 Kcrypt[GSS_KRB5_MAX_KEYLEN]; u8 zeroconstant[4] = {0}; u8 seqnumarray[4]; int err, i; dprintk("%s: entered, seqnum %u\n", __func__, seqnum); hmac = crypto_alloc_shash(kctx->gk5e->cksum_name, 0, 0); if (IS_ERR(hmac)) { dprintk("%s: error %ld, allocating hash '%s'\n", __func__, PTR_ERR(hmac), kctx->gk5e->cksum_name); return PTR_ERR(hmac); } desc = kmalloc(sizeof(*desc) + crypto_shash_descsize(hmac), GFP_NOFS); if (!desc) { dprintk("%s: failed to allocate shash descriptor for '%s'\n", __func__, kctx->gk5e->cksum_name); crypto_free_shash(hmac); return -ENOMEM; } desc->tfm = hmac; desc->flags = 0; /* Compute intermediate Kcrypt from session key */ for (i = 0; i < kctx->gk5e->keylength; i++) Kcrypt[i] = kctx->Ksess[i] ^ 0xf0; err = crypto_shash_setkey(hmac, Kcrypt, kctx->gk5e->keylength); if (err) goto out_err; err = crypto_shash_digest(desc, zeroconstant, 4, Kcrypt); if (err) goto out_err; /* Compute final Kcrypt from the seqnum and intermediate Kcrypt */ err = crypto_shash_setkey(hmac, Kcrypt, kctx->gk5e->keylength); if (err) goto out_err; seqnumarray[0] = (unsigned char) ((seqnum >> 24) & 0xff); seqnumarray[1] = (unsigned char) ((seqnum >> 16) & 0xff); seqnumarray[2] = (unsigned char) ((seqnum >> 8) & 0xff); seqnumarray[3] = (unsigned char) ((seqnum >> 0) & 0xff); err = crypto_shash_digest(desc, seqnumarray, 4, Kcrypt); if (err) goto out_err; err = crypto_skcipher_setkey(cipher, Kcrypt, kctx->gk5e->keylength); if (err) goto out_err; err = 0; out_err: kzfree(desc); crypto_free_shash(hmac); dprintk("%s: returning %d\n", __func__, err); return err; }