/* * NOTE: This example is works on x86 and powerpc. * Here's a sample kernel module showing the use of kprobes to dump a * stack trace and selected registers when _do_fork() is called. * * For more information on theory of operation of kprobes, see * Documentation/kprobes.txt * * You will see the trace data in /var/log/messages and on the console * whenever _do_fork() is invoked to create a new process. */ #include #include #include #define MAX_SYMBOL_LEN 64 static char symbol[MAX_SYMBOL_LEN] = "_do_fork"; module_param_string(symbol, symbol, sizeof(symbol), 0644); /* For each probe you need to allocate a kprobe structure */ static struct kprobe kp = { .symbol_name = symbol, }; /* kprobe pre_handler: called just before the probed instruction is executed */ static int handler_pre(struct kprobe *p, struct pt_regs *regs) { #ifdef CONFIG_X86 pr_info("<%s> pre_handler: p->addr = 0x%p, ip = %lx, flags = 0x%lx\n", p->symbol_name, p->addr, regs->ip, regs->flags); #endif #ifdef CONFIG_PPC pr_info("<%s> pre_handler: p->addr = 0x%p, nip = 0x%lx, msr = 0x%lx\n", p->symbol_name, p->addr, regs->nip, regs->msr); #endif #ifdef CONFIG_MIPS pr_info("<%s> pre_handler: p->addr = 0x%p, epc = 0x%lx, status = 0x%lx\n", p->symbol_name, p->addr, regs->cp0_epc, regs->cp0_status); #endif #ifdef CONFIG_TILEGX pr_info("<%s> pre_handler: p->addr = 0x%p, pc = 0x%lx, ex1 = 0x%lx\n", p->symbol_name, p->addr, regs->pc, regs->ex1); #endif #ifdef CONFIG_ARM64 pr_info("<%s> pre_handler: p->addr = 0x%p, pc = 0x%lx," " pstate = 0x%lx\n", p->symbol_name, p->addr, (long)regs->pc, (long)regs->pstate); #endif /* A dump_stack() here will give a stack backtrace */ return 0; } /* kprobe post_handler: called after the probed instruction is executed */ static void handler_post(struct kprobe *p, struct pt_regs *regs, unsigned long flags) { #ifdef CONFIG_X86 pr_info("<%s> post_handler: p->addr = 0x%p, flags = 0x%lx\n", p->symbol_name, p->addr, regs->flags); #endif #ifdef CONFIG_PPC pr_info("<%s> post_handler: p->addr = 0x%p, msr = 0x%lx\n", p->symbol_name, p->addr, regs->msr); #endif #ifdef CONFIG_MIPS pr_info("<%s> post_handler: p->addr = 0x%p, status = 0x%lx\n", p->symbol_name, p->addr, regs->cp0_status); #endif #ifdef CONFIG_TILEGX pr_info("<%s> post_handler: p->addr = 0x%p, ex1 = 0x%lx\n", p->symbol_name, p->addr, regs->ex1); #endif #ifdef CONFIG_ARM64 pr_info("<%s> post_handler: p->addr = 0x%p, pstate = 0x%lx\n", p->symbol_name, p->addr, (long)regs->pstate); #endif } /* * fault_handler: this is called if an exception is generated for any * instruction within the pre- or post-handler, or when Kprobes * single-steps the probed instruction. */ static int handler_fault(struct kprobe *p, struct pt_regs *regs, int trapnr) { pr_info("fault_handler: p->addr = 0x%p, trap #%dn", p->addr, trapnr); /* Return 0 because we don't handle the fault. */ return 0; } static int __init kprobe_init(void) { int ret; kp.pre_handler = handler_pre; kp.post_handler = handler_post; kp.fault_handler = handler_fault; ret = register_kprobe(&kp); if (ret < 0) { pr_err("register_kprobe failed, returned %d\n", ret); return ret; } pr_info("Planted kprobe at %p\n", kp.addr); return 0; } static void __exit kprobe_exit(void) { unregister_kprobe(&kp); pr_info("kprobe at %p unregistered\n", kp.addr); } module_init(kprobe_init) module_exit(kprobe_exit) MODULE_LICENSE("GPL"); t/tools?id=29200c199cc9bde59033ab30fcc40b6c8ae630b0'>bpf: test for AND edge casesJosef Bacik1-0/+55