#!/bin/sh -x
# Based on the vmlinux file create the System.map file
# System.map is used by module-init tools and some debugging
# tools to retrieve the actual addresses of symbols in the kernel.
#
# Usage
# mksysmap vmlinux System.map
#####
# Generate System.map (actual filename passed as second argument)
# $NM produces the following output:
# f0081e80 T alloc_vfsmnt
# The second row specify the type of the symbol:
# A = Absolute
# B = Uninitialised data (.bss)
# C = Common symbol
# D = Initialised data
# G = Initialised data for small objects
# I = Indirect reference to another symbol
# N = Debugging symbol
# R = Read only
# S = Uninitialised data for small objects
# T = Text code symbol
# U = Undefined symbol
# V = Weak symbol
# W = Weak symbol
# Corresponding small letters are local symbols
# For System.map filter away:
# a - local absolute symbols
# U - undefined global symbols
# N - debugging symbols
# w - local weak symbols
# readprofile starts reading symbols when _stext is found, and
# continue until it finds a symbol which is not either of 'T', 't',
# 'W' or 'w'. __crc_ are 'A' and placed in the middle
# so we just ignore them to let readprofile continue to work.
# (At least sparc64 has __crc_ in the middle).
$NM -n $1 | grep -v '\( [aNUw] \)\|\(__crc_\)\|\( \$[adt]\)\|\( .L\)' > $2
x-pump-back
cpufreq: intel_pstate: Disable energy efficiency optimization
Some Kabylake desktop processors may not reach max turbo when running in
HWP mode, even if running under sustained 100% utilization.
This occurs when the HWP.EPP (Energy Performance Preference) is set to
"balance_power" (0x80) -- the default on most systems.
It occurs because the platform BIOS may erroneously enable an
energy-efficiency setting -- MSR_IA32_POWER_CTL BIT-EE, which is not
recommended to be enabled on this SKU.
On the failing systems, this BIOS issue was not discovered when the
desktop motherboard was tested with Windows, because the BIOS also
neglects to provide the ACPI/CPPC table, that Windows requires to enable
HWP, and so Windows runs in legacy P-state mode, where this setting has
no effect.
Linux' intel_pstate driver does not require ACPI/CPPC to enable HWP, and
so it runs in HWP mode, exposing this incorrect BIOS configuration.
There are several ways to address this problem.
First, Linux can also run in legacy P-state mode on this system.
As intel_pstate is how Linux enables HWP, booting with
"intel_pstate=disable"
will run in acpi-cpufreq/ondemand legacy p-state mode.
Or second, the "performance" governor can be used with intel_pstate,
which will modify HWP.EPP to 0.
Or third, starting in 4.10, the
/sys/devices/system/cpu/cpufreq/policy*/energy_performance_preference
attribute in can be updated from "balance_power" to "performance".
Or fourth, apply this patch, which fixes the erroneous setting of
MSR_IA32_POWER_CTL BIT_EE on this model, allowing the default
configuration to function as designed.
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Reviewed-by: Len Brown <len.brown@intel.com>
Cc: 4.6+ <stable@vger.kernel.org> # 4.6+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Diffstat (limited to 'tools/perf/tests/fdarray.c')