#
config INTEGRITY
bool "Integrity subsystem"
depends on SECURITY
default y
help
This option enables the integrity subsystem, which is comprised
of a number of different components including the Integrity
Measurement Architecture (IMA), Extended Verification Module
(EVM), IMA-appraisal extension, digital signature verification
extension and audit measurement log support.
Each of these components can be enabled/disabled separately.
Refer to the individual components for additional details.
if INTEGRITY
config INTEGRITY_SIGNATURE
bool "Digital signature verification using multiple keyrings"
depends on KEYS
default n
select SIGNATURE
help
This option enables digital signature verification support
using multiple keyrings. It defines separate keyrings for each
of the different use cases - evm, ima, and modules.
Different keyrings improves search performance, but also allow
to "lock" certain keyring to prevent adding new keys.
This is useful for evm and module keyrings, when keys are
usually only added from initramfs.
config INTEGRITY_ASYMMETRIC_KEYS
bool "Enable asymmetric keys support"
depends on INTEGRITY_SIGNATURE
default n
select ASYMMETRIC_KEY_TYPE
select ASYMMETRIC_PUBLIC_KEY_SUBTYPE
select CRYPTO_RSA
select X509_CERTIFICATE_PARSER
help
This option enables digital signature verification using
asymmetric keys.
config INTEGRITY_TRUSTED_KEYRING
bool "Require all keys on the integrity keyrings be signed"
depends on SYSTEM_TRUSTED_KEYRING
depends on INTEGRITY_ASYMMETRIC_KEYS
default y
help
This option requires that all keys added to the .ima and
.evm keyrings be signed by a key on the system trusted
keyring.
config INTEGRITY_AUDIT
bool "Enables integrity auditing support "
depends on AUDIT
default y
help
In addition to enabling integrity auditing support, this
option adds a kernel parameter 'integrity_audit', which
controls the level of integrity auditing messages.
0 - basic integrity auditing messages (default)
1 - additional integrity auditing messages
Additional informational integrity auditing messages would
be enabled by specifying 'integrity_audit=1' on the kernel
command line.
source security/integrity/ima/Kconfig
source security/integrity/evm/Kconfig
endif # if INTEGRITY
rep'>log msg
x86/microcode/intel: Drop stashed AP patch pointer optimization
This was meant to save us the scanning of the microcode containter in
the initrd since the first AP had already done that but it can also hurt
us:
Imagine a single hyperthreaded CPU (Intel(R) Atom(TM) CPU N270, for
example) which updates the microcode on the BSP but since the microcode
engine is shared between the two threads, the update on CPU1 doesn't
happen because it has already happened on CPU0 and we don't find a newer
microcode revision on CPU1.
Which doesn't set the intel_ucode_patch pointer and at initrd
jettisoning time we don't save the microcode patch for later
application.
Now, when we suspend to RAM, the loaded microcode gets cleared so we
need to reload but there's no patch saved in the cache.
Removing the optimization fixes this issue and all is fine and dandy.
Fixes: 06b8534cb728 ("x86/microcode: Rework microcode loading")
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170120202955.4091-2-bp@alien8.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>