# # Key management configuration # config KEYS bool "Enable access key retention support" select ASSOCIATIVE_ARRAY help This option provides support for retaining authentication tokens and access keys in the kernel. It also includes provision of methods by which such keys might be associated with a process so that network filesystems, encryption support and the like can find them. Furthermore, a special type of key is available that acts as keyring: a searchable sequence of keys. Each process is equipped with access to five standard keyrings: UID-specific, GID-specific, session, process and thread. If you are unsure as to whether this is required, answer N. config PERSISTENT_KEYRINGS bool "Enable register of persistent per-UID keyrings" depends on KEYS help This option provides a register of persistent per-UID keyrings, primarily aimed at Kerberos key storage. The keyrings are persistent in the sense that they stay around after all processes of that UID have exited, not that they survive the machine being rebooted. A particular keyring may be accessed by either the user whose keyring it is or by a process with administrative privileges. The active LSMs gets to rule on which admin-level processes get to access the cache. Keyrings are created and added into the register upon demand and get removed if they expire (a default timeout is set upon creation). config BIG_KEYS bool "Large payload keys" depends on KEYS depends on TMPFS depends on (CRYPTO_ANSI_CPRNG = y || CRYPTO_DRBG = y) select CRYPTO_AES select CRYPTO_ECB select CRYPTO_RNG help This option provides support for holding large keys within the kernel (for example Kerberos ticket caches). The data may be stored out to swapspace by tmpfs. If you are unsure as to whether this is required, answer N. config TRUSTED_KEYS tristate "TRUSTED KEYS" depends on KEYS && TCG_TPM select CRYPTO select CRYPTO_HMAC select CRYPTO_SHA1 select CRYPTO_HASH_INFO help This option provides support for creating, sealing, and unsealing keys in the kernel. Trusted keys are random number symmetric keys, generated and RSA-sealed by the TPM. The TPM only unseals the keys, if the boot PCRs and other criteria match. Userspace will only ever see encrypted blobs. If you are unsure as to whether this is required, answer N. config ENCRYPTED_KEYS tristate "ENCRYPTED KEYS" depends on KEYS select CRYPTO select CRYPTO_HMAC select CRYPTO_AES select CRYPTO_CBC select CRYPTO_SHA256 select CRYPTO_RNG help This option provides support for create/encrypting/decrypting keys in the kernel. Encrypted keys are kernel generated random numbers, which are encrypted/decrypted with a 'master' symmetric key. The 'master' key can be either a trusted-key or user-key type. Userspace only ever sees/stores encrypted blobs. If you are unsure as to whether this is required, answer N. config KEY_DH_OPERATIONS bool "Diffie-Hellman operations on retained keys" depends on KEYS select MPILIB help This option provides support for calculating Diffie-Hellman public keys and shared secrets using values stored as keys in the kernel. If you are unsure as to whether this is required, answer N. '>
context:
space:
mode:
authorThomas Gleixner <tglx@linutronix.de>2017-01-31 09:37:34 +0100
committerThomas Gleixner <tglx@linutronix.de>2017-01-31 21:47:58 +0100
commit0becc0ae5b42828785b589f686725ff5bc3b9b25 (patch)
treebe6d0e1f37c38ed0a7dd5da2d4b1e93f0fb43101 /include/uapi/drm/drm.h
parent24c2503255d35c269b67162c397a1a1c1e02f6ce (diff)
x86/mce: Make timer handling more robust
Erik reported that on a preproduction hardware a CMCI storm triggers the BUG_ON in add_timer_on(). The reason is that the per CPU MCE timer is started by the CMCI logic before the MCE CPU hotplug callback starts the timer with add_timer_on(). So the timer is already queued which triggers the BUG. Using add_timer_on() is pretty pointless in this code because the timer is strictlty per CPU, initialized as pinned and all operations which arm the timer happen on the CPU to which the timer belongs. Simplify the whole machinery by using mod_timer() instead of add_timer_on() which avoids the problem because mod_timer() can handle already queued timers. Use __start_timer() everywhere so the earliest armed expiry time is preserved. Reported-by: Erik Veijola <erik.veijola@intel.com> Tested-by: Borislav Petkov <bp@alien8.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@alien8.de> Cc: Tony Luck <tony.luck@intel.com> Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1701310936080.3457@nanos Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Diffstat (limited to 'include/uapi/drm/drm.h')