/* Large capacity key type * * Copyright (C) 2013 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public Licence * as published by the Free Software Foundation; either version * 2 of the Licence, or (at your option) any later version. */ #define pr_fmt(fmt) "big_key: "fmt #include #include #include #include #include #include #include #include #include #include /* * Layout of key payload words. */ enum { big_key_data, big_key_path, big_key_path_2nd_part, big_key_len, }; /* * Crypto operation with big_key data */ enum big_key_op { BIG_KEY_ENC, BIG_KEY_DEC, }; /* * If the data is under this limit, there's no point creating a shm file to * hold it as the permanently resident metadata for the shmem fs will be at * least as large as the data. */ #define BIG_KEY_FILE_THRESHOLD (sizeof(struct inode) + sizeof(struct dentry)) /* * Key size for big_key data encryption */ #define ENC_KEY_SIZE 16 /* * big_key defined keys take an arbitrary string as the description and an * arbitrary blob of data as the payload */ struct key_type key_type_big_key = { .name = "big_key", .preparse = big_key_preparse, .free_preparse = big_key_free_preparse, .instantiate = generic_key_instantiate, .revoke = big_key_revoke, .destroy = big_key_destroy, .describe = big_key_describe, .read = big_key_read, }; /* * Crypto names for big_key data encryption */ static const char big_key_rng_name[] = "stdrng"; static const char big_key_alg_name[] = "ecb(aes)"; /* * Crypto algorithms for big_key data encryption */ static struct crypto_rng *big_key_rng; static struct crypto_skcipher *big_key_skcipher; /* * Generate random key to encrypt big_key data */ static inline int big_key_gen_enckey(u8 *key) { return crypto_rng_get_bytes(big_key_rng, key, ENC_KEY_SIZE); } /* * Encrypt/decrypt big_key data */ static int big_key_crypt(enum big_key_op op, u8 *data, size_t datalen, u8 *key) { int ret = -EINVAL; struct scatterlist sgio; SKCIPHER_REQUEST_ON_STACK(req, big_key_skcipher); if (crypto_skcipher_setkey(big_key_skcipher, key, ENC_KEY_SIZE)) { ret = -EAGAIN; goto error; } skcipher_request_set_tfm(req, big_key_skcipher); skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL); sg_init_one(&sgio, data, datalen); skcipher_request_set_crypt(req, &sgio, &sgio, datalen, NULL); if (op == BIG_KEY_ENC) ret = crypto_skcipher_encrypt(req); else ret = crypto_skcipher_decrypt(req); skcipher_request_zero(req); error: return ret; } /* * Preparse a big key */ int big_key_preparse(struct key_preparsed_payload *prep) { struct path *path = (struct path *)&prep->payload.data[big_key_path]; struct file *file; u8 *enckey; u8 *data = NULL; ssize_t written; size_t datalen = prep->datalen; int ret; ret = -EINVAL; if (datalen <= 0 || datalen > 1024 * 1024 || !prep->data) goto error; /* Set an arbitrary quota */ prep->quotalen = 16; prep->payload.data[big_key_len] = (void *)(unsigned long)datalen; if (datalen > BIG_KEY_FILE_THRESHOLD) { /* Create a shmem file to store the data in. This will permit the data * to be swapped out if needed. * * File content is stored encrypted with randomly generated key. */ size_t enclen = ALIGN(datalen, crypto_skcipher_blocksize(big_key_skcipher)); /* prepare aligned data to encrypt */ data = kmalloc(enclen, GFP_KERNEL); if (!data) return -ENOMEM; memcpy(data, prep->data, datalen); memset(data + datalen, 0x00, enclen - datalen); /* generate random key */ enckey = kmalloc(ENC_KEY_SIZE, GFP_KERNEL); if (!enckey) { ret = -ENOMEM; goto error; } ret = big_key_gen_enckey(enckey); if (ret) goto err_enckey; /* encrypt aligned data */ ret = big_key_crypt(BIG_KEY_ENC, data, enclen, enckey); if (ret) goto err_enckey; /* save aligned data to file */ file = shmem_kernel_file_setup("", enclen, 0); if (IS_ERR(file)) { ret = PTR_ERR(file); goto err_enckey; } written = kernel_write(file, data, enclen, 0); if (written != enclen) { ret = written; if (written >= 0) ret = -ENOMEM; goto err_fput; } /* Pin the mount and dentry to the key so that we can open it again * later */ prep->payload.data[big_key_data] = enckey; *path = file->f_path; path_get(path); fput(file); kfree(data); } else { /* Just store the data in a buffer */ void *data = kmalloc(datalen, GFP_KERNEL); if (!data) return -ENOMEM; prep->payload.data[big_key_data] = data; memcpy(data, prep->data, prep->datalen); } return 0; err_fput: fput(file); err_enckey: kfree(enckey); error: kfree(data); return ret; } /* * Clear preparsement. */ void big_key_free_preparse(struct key_preparsed_payload *prep) { if (prep->datalen > BIG_KEY_FILE_THRESHOLD) { struct path *path = (struct path *)&prep->payload.data[big_key_path]; path_put(path); } kfree(prep->payload.data[big_key_data]); } /* * dispose of the links from a revoked keyring * - called with the key sem write-locked */ void big_key_revoke(struct key *key) { struct path *path = (struct path *)&key->payload.data[big_key_path]; /* clear the quota */ key_payload_reserve(key, 0); if (key_is_instantiated(key) && (size_t)key->payload.data[big_key_len] > BIG_KEY_FILE_THRESHOLD) vfs_truncate(path, 0); } /* * dispose of the data dangling from the corpse of a big_key key */ void big_key_destroy(struct key *key) { size_t datalen = (size_t)key->payload.data[big_key_len]; if (datalen > BIG_KEY_FILE_THRESHOLD) { struct path *path = (struct path *)&key->payload.data[big_key_path]; path_put(path); path->mnt = NULL; path->dentry = NULL; } kfree(key->payload.data[big_key_data]); key->payload.data[big_key_data] = NULL; } /* * describe the big_key key */ void big_key_describe(const struct key *key, struct seq_file *m) { size_t datalen = (size_t)key->payload.data[big_key_len]; seq_puts(m, key->description); if (key_is_instantiated(key)) seq_printf(m, ": %zu [%s]", datalen, datalen > BIG_KEY_FILE_THRESHOLD ? "file" : "buff"); } /* * read the key data * - the key's semaphore is read-locked */ long big_key_read(const struct key *key, char __user *buffer, size_t buflen) { size_t datalen = (size_t)key->payload.data[big_key_len]; long ret; if (!buffer || buflen < datalen) return datalen; if (datalen > BIG_KEY_FILE_THRESHOLD) { struct path *path = (struct path *)&key->payload.data[big_key_path]; struct file *file; u8 *data; u8 *enckey = (u8 *)key->payload.data[big_key_data]; size_t enclen = ALIGN(datalen, crypto_skcipher_blocksize(big_key_skcipher)); data = kmalloc(enclen, GFP_KERNEL); if (!data) return -ENOMEM; file = dentry_open(path, O_RDONLY, current_cred()); if (IS_ERR(file)) { ret = PTR_ERR(file); goto error; } /* read file to kernel and decrypt */ ret = kernel_read(file, 0, data, enclen); if (ret >= 0 && ret != enclen) { ret = -EIO; goto err_fput; } ret = big_key_crypt(BIG_KEY_DEC, data, enclen, enckey); if (ret) goto err_fput; ret = datalen; /* copy decrypted data to user */ if (copy_to_user(buffer, data, datalen) != 0) ret = -EFAULT; err_fput: fput(file); error: kfree(data); } else { ret = datalen; if (copy_to_user(buffer, key->payload.data[big_key_data], datalen) != 0) ret = -EFAULT; } return ret; } /* * Register key type */ static int __init big_key_init(void) { struct crypto_skcipher *cipher; struct crypto_rng *rng; int ret; rng = crypto_alloc_rng(big_key_rng_name, 0, 0); if (IS_ERR(rng)) { pr_err("Can't alloc rng: %ld\n", PTR_ERR(rng)); return PTR_ERR(rng); } big_key_rng = rng; /* seed RNG */ ret = crypto_rng_reset(rng, NULL, crypto_rng_seedsize(rng)); if (ret) { pr_err("Can't reset rng: %d\n", ret); goto error_rng; } /* init block cipher */ cipher = crypto_alloc_skcipher(big_key_alg_name, 0, CRYPTO_ALG_ASYNC); if (IS_ERR(cipher)) { ret = PTR_ERR(cipher); pr_err("Can't alloc crypto: %d\n", ret); goto error_rng; } big_key_skcipher = cipher; ret = register_key_type(&key_type_big_key); if (ret < 0) { pr_err("Can't register type: %d\n", ret); goto error_cipher; } return 0; error_cipher: crypto_free_skcipher(big_key_skcipher); error_rng: crypto_free_rng(big_key_rng); return ret; } late_initcall(big_key_init); _hhf.c')