/* * card-als4000.c - driver for Avance Logic ALS4000 based soundcards. * Copyright (C) 2000 by Bart Hartgers <bart@etpmod.phys.tue.nl>, * Jaroslav Kysela <perex@perex.cz> * Copyright (C) 2002, 2008 by Andreas Mohr <hw7oshyuv3001@sneakemail.com> * * Framework borrowed from Massimo Piccioni's card-als100.c. * * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * NOTES * * Since Avance does not provide any meaningful documentation, and I * bought an ALS4000 based soundcard, I was forced to base this driver * on reverse engineering. * * Note: this is no longer true (thank you!): * pretty verbose chip docu (ALS4000a.PDF) can be found on the ALSA web site. * Page numbers stated anywhere below with the "SPECS_PAGE:" tag * refer to: ALS4000a.PDF specs Ver 1.0, May 28th, 1998. * * The ALS4000 seems to be the PCI-cousin of the ALS100. It contains an * ALS100-like SB DSP/mixer, an OPL3 synth, a MPU401 and a gameport * interface. These subsystems can be mapped into ISA io-port space, * using the PCI-interface. In addition, the PCI-bit provides DMA and IRQ * services to the subsystems. * * While ALS4000 is very similar to a SoundBlaster, the differences in * DMA and capturing require more changes to the SoundBlaster than * desirable, so I made this separate driver. * * The ALS4000 can do real full duplex playback/capture. * * FMDAC: * - 0x4f -> port 0x14 * - port 0x15 |= 1 * * Enable/disable 3D sound: * - 0x50 -> port 0x14 * - change bit 6 (0x40) of port 0x15 * * Set QSound: * - 0xdb -> port 0x14 * - set port 0x15: * 0x3e (mode 3), 0x3c (mode 2), 0x3a (mode 1), 0x38 (mode 0) * * Set KSound: * - value -> some port 0x0c0d * * ToDo: * - by default, don't enable legacy game and use PCI game I/O * - power management? (card can do voice wakeup according to datasheet!!) */ #include <linux/io.h> #include <linux/init.h> #include <linux/pci.h> #include <linux/gameport.h> #include <linux/module.h> #include <linux/dma-mapping.h> #include <sound/core.h> #include <sound/pcm.h> #include <sound/rawmidi.h> #include <sound/mpu401.h> #include <sound/opl3.h> #include <sound/sb.h> #include <sound/initval.h> MODULE_AUTHOR("Bart Hartgers <bart@etpmod.phys.tue.nl>, Andreas Mohr"); MODULE_DESCRIPTION("Avance Logic ALS4000"); MODULE_LICENSE("GPL"); MODULE_SUPPORTED_DEVICE("{{Avance Logic,ALS4000}}"); #if IS_REACHABLE(CONFIG_GAMEPORT) #define SUPPORT_JOYSTICK 1 #endif static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */ static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */ static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable this card */ #ifdef SUPPORT_JOYSTICK static int joystick_port[SNDRV_CARDS]; #endif module_param_array(index, int, NULL, 0444); MODULE_PARM_DESC(index, "Index value for ALS4000 soundcard."); module_param_array(id, charp, NULL, 0444); MODULE_PARM_DESC(id, "ID string for ALS4000 soundcard."); module_param_array(enable, bool, NULL, 0444); MODULE_PARM_DESC(enable, "Enable ALS4000 soundcard."); #ifdef SUPPORT_JOYSTICK module_param_array(joystick_port, int, NULL, 0444); MODULE_PARM_DESC(joystick_port, "Joystick port address for ALS4000 soundcard. (0 = disabled)"); #endif struct snd_card_als4000 { /* most frequent access first */ unsigned long iobase; struct pci_dev *pci; struct snd_sb *chip; #ifdef SUPPORT_JOYSTICK struct gameport *gameport; #endif }; static const struct pci_device_id snd_als4000_ids[] = { { 0x4005, 0x4000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0, }, /* ALS4000 */ { 0, } }; MODULE_DEVICE_TABLE(pci, snd_als4000_ids); enum als4k_iobase_t { /* IOx: B == Byte, W = Word, D = DWord; SPECS_PAGE: 37 */ ALS4K_IOD_00_AC97_ACCESS = 0x00, ALS4K_IOW_04_AC97_READ = 0x04, ALS4K_IOB_06_AC97_STATUS = 0x06, ALS4K_IOB_07_IRQSTATUS = 0x07, ALS4K_IOD_08_GCR_DATA = 0x08, ALS4K_IOB_0C_GCR_INDEX = 0x0c, ALS4K_IOB_0E_IRQTYPE_SB_CR1E_MPU = 0x0e, ALS4K_IOB_10_ADLIB_ADDR0 = 0x10, ALS4K_IOB_11_ADLIB_ADDR1 = 0x11, ALS4K_IOB_12_ADLIB_ADDR2 = 0x12, ALS4K_IOB_13_ADLIB_ADDR3 = 0x13, ALS4K_IOB_14_MIXER_INDEX = 0x14, ALS4K_IOB_15_MIXER_DATA = 0x15, ALS4K_IOB_16_ESP_RESET = 0x16, ALS4K_IOB_16_ACK_FOR_CR1E = 0x16, /* 2nd function */ ALS4K_IOB_18_OPL_ADDR0 = 0x18, ALS4K_IOB_19_OPL_ADDR1 = 0x19, ALS4K_IOB_1A_ESP_RD_DATA = 0x1a, ALS4K_IOB_1C_ESP_CMD_DATA = 0x1c, ALS4K_IOB_1C_ESP_WR_STATUS = 0x1c, /* 2nd function */ ALS4K_IOB_1E_ESP_RD_STATUS8 = 0x1e, ALS4K_IOB_1F_ESP_RD_STATUS16 = 0x1f, ALS4K_IOB_20_ESP_GAMEPORT_200 = 0x20, ALS4K_IOB_21_ESP_GAMEPORT_201 = 0x21, ALS4K_IOB_30_MIDI_DATA = 0x30, ALS4K_IOB_31_MIDI_STATUS = 0x31, ALS4K_IOB_31_MIDI_COMMAND = 0x31, /* 2nd function */ }; enum als4k_iobase_0e_t { ALS4K_IOB_0E_MPU_IRQ = 0x10, ALS4K_IOB_0E_CR1E_IRQ = 0x40, ALS4K_IOB_0E_SB_DMA_IRQ = 0x80, }; enum als4k_gcr_t { /* all registers 32bit wide; SPECS_PAGE: 38 to 42 */ ALS4K_GCR8C_MISC_CTRL = 0x8c, ALS4K_GCR90_TEST_MODE_REG = 0x90, ALS4K_GCR91_DMA0_ADDR = 0x91, ALS4K_GCR92_DMA0_MODE_COUNT = 0x92, ALS4K_GCR93_DMA1_ADDR = 0x93, ALS4K_GCR94_DMA1_MODE_COUNT = 0x94, ALS4K_GCR95_DMA3_ADDR = 0x95, ALS4K_GCR96_DMA3_MODE_COUNT = 0x96, ALS4K_GCR99_DMA_EMULATION_CTRL = 0x99, ALS4K_GCRA0_FIFO1_CURRENT_ADDR = 0xa0, ALS4K_GCRA1_FIFO1_STATUS_BYTECOUNT = 0xa1, ALS4K_GCRA2_FIFO2_PCIADDR = 0xa2, ALS4K_GCRA3_FIFO2_COUNT = 0xa3, ALS4K_GCRA4_FIFO2_CURRENT_ADDR = 0xa4, ALS4K_GCRA5_FIFO1_STATUS_BYTECOUNT = 0xa5, ALS4K_GCRA6_PM_CTRL = 0xa6, ALS4K_GCRA7_PCI_ACCESS_STORAGE = 0xa7, ALS4K_GCRA8_LEGACY_CFG1 = 0xa8, ALS4K_GCRA9_LEGACY_CFG2 = 0xa9, ALS4K_GCRFF_DUMMY_SCRATCH = 0xff, }; enum als4k_gcr8c_t { ALS4K_GCR8C_IRQ_MASK_CTRL_ENABLE = 0x8000, ALS4K_GCR8C_CHIP_REV_MASK = 0xf0000 }; static inline void snd_als4k_iobase_writeb(unsigned long iobase, enum als4k_iobase_t reg, u8 val) { outb(val, iobase + reg); } static inline void snd_als4k_iobase_writel(unsigned long iobase, enum als4k_iobase_t reg, u32 val) { outl(val, iobase + reg); } static inline u8 snd_als4k_iobase_readb(unsigned long iobase, enum als4k_iobase_t reg) { return inb(iobase + reg); } static inline u32 snd_als4k_iobase_readl(unsigned long iobase, enum als4k_iobase_t reg) { return inl(iobase + reg); } static inline void snd_als4k_gcr_write_addr(unsigned long iobase, enum als4k_gcr_t reg, u32 val) { snd_als4k_iobase_writeb(iobase, ALS4K_IOB_0C_GCR_INDEX, reg); snd_als4k_iobase_writel(iobase, ALS4K_IOD_08_GCR_DATA, val); } static inline void snd_als4k_gcr_write(struct snd_sb *sb, enum als4k_gcr_t reg, u32 val) { snd_als4k_gcr_write_addr(sb->alt_port, reg, val); } static inline u32 snd_als4k_gcr_read_addr(unsigned long iobase, enum als4k_gcr_t reg) { /* SPECS_PAGE: 37/38 */ snd_als4k_iobase_writeb(iobase, ALS4K_IOB_0C_GCR_INDEX, reg); return snd_als4k_iobase_readl(iobase, ALS4K_IOD_08_GCR_DATA); } static inline u32 snd_als4k_gcr_read(struct snd_sb *sb, enum als4k_gcr_t reg) { return snd_als4k_gcr_read_addr(sb->alt_port, reg); } enum als4k_cr_t { /* all registers 8bit wide; SPECS_PAGE: 20 to 23 */ ALS4K_CR0_SB_CONFIG = 0x00, ALS4K_CR2_MISC_CONTROL = 0x02, ALS4K_CR3_CONFIGURATION = 0x03, ALS4K_CR17_FIFO_STATUS = 0x17, ALS4K_CR18_ESP_MAJOR_VERSION = 0x18, ALS4K_CR19_ESP_MINOR_VERSION = 0x19, ALS4K_CR1A_MPU401_UART_MODE_CONTROL = 0x1a, ALS4K_CR1C_FIFO2_BLOCK_LENGTH_LO = 0x1c, ALS4K_CR1D_FIFO2_BLOCK_LENGTH_HI = 0x1d, ALS4K_CR1E_FIFO2_CONTROL = 0x1e, /* secondary PCM FIFO (recording) */ ALS4K_CR3A_MISC_CONTROL = 0x3a, ALS4K_CR3B_CRC32_BYTE0 = 0x3b, /* for testing, activate via CR3A */ ALS4K_CR3C_CRC32_BYTE1 = 0x3c, ALS4K_CR3D_CRC32_BYTE2 = 0x3d, ALS4K_CR3E_CRC32_BYTE3 = 0x3e, }; enum als4k_cr0_t { ALS4K_CR0_DMA_CONTIN_MODE_CTRL = 0x02, /* IRQ/FIFO controlled for 0/1 */ ALS4K_CR0_DMA_90H_MODE_CTRL = 0x04, /* IRQ/FIFO controlled for 0/1 */ ALS4K_CR0_MX80_81_REG_WRITE_ENABLE = 0x80, }; static inline void snd_als4_cr_write(struct snd_sb *chip, enum als4k_cr_t reg, u8 data) { /* Control Register is reg | 0xc0 (bit 7, 6 set) on sbmixer_index * NOTE: assumes chip->mixer_lock to be locked externally already! * SPECS_PAGE: 6 */ snd_sbmixer_write(chip, reg | 0xc0, data); } static inline u8 snd_als4_cr_read(struct snd_sb *chip, enum als4k_cr_t reg) { /* NOTE: assumes chip->mixer_lock to be locked externally already! */ return snd_sbmixer_read(chip, reg | 0xc0); } static void snd_als4000_set_rate(struct snd_sb *chip, unsigned int rate) { if (!(chip->mode & SB_RATE_LOCK)) { snd_sbdsp_command(chip, SB_DSP_SAMPLE_RATE_OUT); snd_sbdsp_command(chip, rate>>8); snd_sbdsp_command(chip, rate); } } static inline void snd_als4000_set_capture_dma(struct snd_sb *chip, dma_addr_t addr, unsigned size) { /* SPECS_PAGE: 40 */ snd_als4k_gcr_write(chip, ALS4K_GCRA2_FIFO2_PCIADDR, addr); snd_als4k_gcr_write(chip, ALS4K_GCRA3_FIFO2_COUNT, (size-1)); } static inline void snd_als4000_set_playback_dma(struct snd_sb *chip, dma_addr_t addr, unsigned size) { /* SPECS_PAGE: 38 */ snd_als4k_gcr_write(chip, ALS4K_GCR91_DMA0_ADDR, addr); snd_als4k_gcr_write(chip, ALS4K_GCR92_DMA0_MODE_COUNT, (size-1)|0x180000); } #define ALS4000_FORMAT_SIGNED (1<<0) #define ALS4000_FORMAT_16BIT (1<<1) #define ALS4000_FORMAT_STEREO (1<<2) static int snd_als4000_get_format(struct snd_pcm_runtime *runtime) { int result; result = 0; if (snd_pcm_format_signed(runtime->format)) result |= ALS4000_FORMAT_SIGNED; if (snd_pcm_format_physical_width(runtime->format) == 16) result |= ALS4000_FORMAT_16BIT; if (runtime->channels > 1) result |= ALS4000_FORMAT_STEREO; return result; } /* structure for setting up playback */ static const struct { unsigned char dsp_cmd, dma_on, dma_off, format; } playback_cmd_vals[]={ /* ALS4000_FORMAT_U8_MONO */ { SB_DSP4_OUT8_AI, SB_DSP_DMA8_ON, SB_DSP_DMA8_OFF, SB_DSP4_MODE_UNS_MONO }, /* ALS4000_FORMAT_S8_MONO */ { SB_DSP4_OUT8_AI, SB_DSP_DMA8_ON, SB_DSP_DMA8_OFF, SB_DSP4_MODE_SIGN_MONO }, /* ALS4000_FORMAT_U16L_MONO */ { SB_DSP4_OUT16_AI, SB_DSP_DMA16_ON, SB_DSP_DMA16_OFF, SB_DSP4_MODE_UNS_MONO }, /* ALS4000_FORMAT_S16L_MONO */ { SB_DSP4_OUT16_AI, SB_DSP_DMA16_ON, SB_DSP_DMA16_OFF, SB_DSP4_MODE_SIGN_MONO }, /* ALS4000_FORMAT_U8_STEREO */ { SB_DSP4_OUT8_AI, SB_DSP_DMA8_ON, SB_DSP_DMA8_OFF, SB_DSP4_MODE_UNS_STEREO }, /* ALS4000_FORMAT_S8_STEREO */ { SB_DSP4_OUT8_AI, SB_DSP_DMA8_ON, SB_DSP_DMA8_OFF, SB_DSP4_MODE_SIGN_STEREO }, /* ALS4000_FORMAT_U16L_STEREO */ { SB_DSP4_OUT16_AI, SB_DSP_DMA16_ON, SB_DSP_DMA16_OFF, SB_DSP4_MODE_UNS_STEREO }, /* ALS4000_FORMAT_S16L_STEREO */ { SB_DSP4_OUT16_AI, SB_DSP_DMA16_ON, SB_DSP_DMA16_OFF, SB_DSP4_MODE_SIGN_STEREO }, }; #define playback_cmd(chip) (playback_cmd_vals[(chip)->playback_format]) /* structure for setting up capture */ enum { CMD_WIDTH8=0x04, CMD_SIGNED=0x10, CMD_MONO=0x80, CMD_STEREO=0xA0 }; static const unsigned char capture_cmd_vals[]= { CMD_WIDTH8|CMD_MONO, /* ALS4000_FORMAT_U8_MONO */ CMD_WIDTH8|CMD_SIGNED|CMD_MONO, /* ALS4000_FORMAT_S8_MONO */ CMD_MONO, /* ALS4000_FORMAT_U16L_MONO */ CMD_SIGNED|CMD_MONO, /* ALS4000_FORMAT_S16L_MONO */ CMD_WIDTH8|CMD_STEREO, /* ALS4000_FORMAT_U8_STEREO */ CMD_WIDTH8|CMD_SIGNED|CMD_STEREO, /* ALS4000_FORMAT_S8_STEREO */ CMD_STEREO, /* ALS4000_FORMAT_U16L_STEREO */ CMD_SIGNED|CMD_STEREO, /* ALS4000_FORMAT_S16L_STEREO */ }; #define capture_cmd(chip) (capture_cmd_vals[(chip)->capture_format]) static int snd_als4000_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *hw_params) { return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params)); } static int snd_als4000_hw_free(struct snd_pcm_substream *substream) { snd_pcm_lib_free_pages(substream); return 0; } static int snd_als4000_capture_prepare(struct snd_pcm_substream *substream) { struct snd_sb *chip = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; unsigned long size; unsigned count; chip->capture_format = snd_als4000_get_format(runtime); size = snd_pcm_lib_buffer_bytes(substream); count = snd_pcm_lib_period_bytes(substream); if (chip->capture_format & ALS4000_FORMAT_16BIT) count >>= 1; count--; spin_lock_irq(&chip->reg_lock); snd_als4000_set_rate(chip, runtime->rate); snd_als4000_set_capture_dma(chip, runtime->dma_addr, size); spin_unlock_irq(&chip->reg_lock); spin_lock_irq(&chip->mixer_lock); snd_als4_cr_write(chip, ALS4K_CR1C_FIFO2_BLOCK_LENGTH_LO, count & 0xff); snd_als4_cr_write(chip, ALS4K_CR1D_FIFO2_BLOCK_LENGTH_HI, count >> 8); spin_unlock_irq(&chip->mixer_lock); return 0; } static int snd_als4000_playback_prepare(struct snd_pcm_substream *substream) { struct snd_sb *chip = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; unsigned long size; unsigned count; chip->playback_format = snd_als4000_get_format(runtime); size = snd_pcm_lib_buffer_bytes(substream); count = snd_pcm_lib_period_bytes(substream); if (chip->playback_format & ALS4000_FORMAT_16BIT) count >>= 1; count--; /* FIXME: from second playback on, there's a lot more clicks and pops * involved here than on first playback. Fiddling with * tons of different settings didn't help (DMA, speaker on/off, * reordering, ...). Something seems to get enabled on playback * that I haven't found out how to disable again, which then causes * the switching pops to reach the speakers the next time here. */ spin_lock_irq(&chip->reg_lock); snd_als4000_set_rate(chip, runtime->rate); snd_als4000_set_playback_dma(chip, runtime->dma_addr, size); /* SPEAKER_ON not needed, since dma_on seems to also enable speaker */ /* snd_sbdsp_command(chip, SB_DSP_SPEAKER_ON); */ snd_sbdsp_command(chip, playback_cmd(chip).dsp_cmd); snd_sbdsp_command(chip, playback_cmd(chip).format); snd_sbdsp_command(chip, count & 0xff); snd_sbdsp_command(chip, count >> 8); snd_sbdsp_command(chip, playback_cmd(chip).dma_off); spin_unlock_irq(&chip->reg_lock); return 0; } static int snd_als4000_capture_trigger(struct snd_pcm_substream *substream, int cmd) { struct snd_sb *chip = snd_pcm_substream_chip(substream); int result = 0; /* FIXME race condition in here!!! chip->mode non-atomic update gets consistently protected by reg_lock always, _except_ for this place!! Probably need to take reg_lock as outer (or inner??) lock, too. (or serialize both lock operations? probably not, though... - racy?) */ spin_lock(&chip->mixer_lock); switch (cmd) { case SNDRV_PCM_TRIGGER_START: case SNDRV_PCM_TRIGGER_RESUME: chip->mode |= SB_RATE_LOCK_CAPTURE; snd_als4_cr_write(chip, ALS4K_CR1E_FIFO2_CONTROL, capture_cmd(chip)); break; case SNDRV_PCM_TRIGGER_STOP: case SNDRV_PCM_TRIGGER_SUSPEND: chip->mode &= ~SB_RATE_LOCK_CAPTURE; snd_als4_cr_write(chip, ALS4K_CR1E_FIFO2_CONTROL, capture_cmd(chip)); break; default: result = -EINVAL; break; } spin_unlock(&chip->mixer_lock); return result; } static int snd_als4000_playback_trigger(struct snd_pcm_substream *substream, int cmd) { struct snd_sb *chip = snd_pcm_substream_chip(substream); int result = 0; spin_lock(&chip->reg_lock); switch (cmd) { case SNDRV_PCM_TRIGGER_START: case SNDRV_PCM_TRIGGER_RESUME: chip->mode |= SB_RATE_LOCK_PLAYBACK; snd_sbdsp_command(chip, playback_cmd(chip).dma_on); break; case SNDRV_PCM_TRIGGER_STOP: case SNDRV_PCM_TRIGGER_SUSPEND: snd_sbdsp_command(chip, playback_cmd(chip).dma_off); chip->mode &= ~SB_RATE_LOCK_PLAYBACK; break; default: result = -EINVAL; break; } spin_unlock(&chip->reg_lock); return result; } static snd_pcm_uframes_t snd_als4000_capture_pointer(struct snd_pcm_substream *substream) { struct snd_sb *chip = snd_pcm_substream_chip(substream); unsigned int result; spin_lock(&chip->reg_lock); result = snd_als4k_gcr_read(chip, ALS4K_GCRA4_FIFO2_CURRENT_ADDR); spin_unlock(&chip->reg_lock); result &= 0xffff; return bytes_to_frames( substream->runtime, result ); } static snd_pcm_uframes_t snd_als4000_playback_pointer(struct snd_pcm_substream *substream) { struct snd_sb *chip = snd_pcm_substream_chip(substream); unsigned result; spin_lock(&chip->reg_lock); result = snd_als4k_gcr_read(chip, ALS4K_GCRA0_FIFO1_CURRENT_ADDR); spin_unlock(&chip->reg_lock); result &= 0xffff; return bytes_to_frames( substream->runtime, result ); } /* FIXME: this IRQ routine doesn't really support IRQ sharing (we always * return IRQ_HANDLED no matter whether we actually had an IRQ flag or not). * ALS4000a.PDF writes that while ACKing IRQ in PCI block will *not* ACK * the IRQ in the SB core, ACKing IRQ in SB block *will* ACK the PCI IRQ * register (alt_port + ALS4K_IOB_0E_IRQTYPE_SB_CR1E_MPU). Probably something * could be optimized here to query/write one register only... * And even if both registers need to be queried, then there's still the * question of whether it's actually correct to ACK PCI IRQ before reading * SB IRQ like we do now, since ALS4000a.PDF mentions that PCI IRQ will *clear* * SB IRQ status. * (hmm, SPECS_PAGE: 38 mentions it the other way around!) * And do we *really* need the lock here for *reading* SB_DSP4_IRQSTATUS?? * */ static irqreturn_t snd_als4000_interrupt(int irq, void *dev_id) { struct snd_sb *chip = dev_id; unsigned pci_irqstatus; unsigned sb_irqstatus; /* find out which bit of the ALS4000 PCI block produced the interrupt, SPECS_PAGE: 38, 5 */ pci_irqstatus = snd_als4k_iobase_readb(chip->alt_port, ALS4K_IOB_0E_IRQTYPE_SB_CR1E_MPU); if ((pci_irqstatus & ALS4K_IOB_0E_SB_DMA_IRQ) && (chip->playback_substream)) /* playback */ snd_pcm_period_elapsed(chip->playback_substream); if ((pci_irqstatus & ALS4K_IOB_0E_CR1E_IRQ) && (chip->capture_substream)) /* capturing */ snd_pcm_period_elapsed(chip->capture_substream); if ((pci_irqstatus & ALS4K_IOB_0E_MPU_IRQ) && (chip->rmidi)) /* MPU401 interrupt */ snd_mpu401_uart_interrupt(irq, chip->rmidi->private_data); /* ACK the PCI block IRQ */ snd_als4k_iobase_writeb(chip->alt_port, ALS4K_IOB_0E_IRQTYPE_SB_CR1E_MPU, pci_irqstatus); spin_lock(&chip->mixer_lock); /* SPECS_PAGE: 20 */ sb_irqstatus = snd_sbmixer_read(chip, SB_DSP4_IRQSTATUS); spin_unlock(&chip->mixer_lock); if (sb_irqstatus & SB_IRQTYPE_8BIT) snd_sb_ack_8bit(chip); if (sb_irqstatus & SB_IRQTYPE_16BIT) snd_sb_ack_16bit(chip); if (sb_irqstatus & SB_IRQTYPE_MPUIN) inb(chip->mpu_port); if (sb_irqstatus & ALS4K_IRQTYPE_CR1E_DMA) snd_als4k_iobase_readb(chip->alt_port, ALS4K_IOB_16_ACK_FOR_CR1E); /* dev_dbg(chip->card->dev, "als4000: irq 0x%04x 0x%04x\n", pci_irqstatus, sb_irqstatus); */ /* only ack the things we actually handled above */ return IRQ_RETVAL( (pci_irqstatus & (ALS4K_IOB_0E_SB_DMA_IRQ|ALS4K_IOB_0E_CR1E_IRQ| ALS4K_IOB_0E_MPU_IRQ)) || (sb_irqstatus & (SB_IRQTYPE_8BIT|SB_IRQTYPE_16BIT| SB_IRQTYPE_MPUIN|ALS4K_IRQTYPE_CR1E_DMA)) ); } /*****************************************************************/ static struct snd_pcm_hardware snd_als4000_playback = { .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_MMAP_VALID), .formats = SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE, /* formats */ .rates = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000, .rate_min = 4000, .rate_max = 48000, .channels_min = 1, .channels_max = 2, .buffer_bytes_max = 65536, .period_bytes_min = 64, .period_bytes_max = 65536, .periods_min = 1, .periods_max = 1024, .fifo_size = 0 }; static struct snd_pcm_hardware snd_als4000_capture = { .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_MMAP_VALID), .formats = SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE, /* formats */ .rates = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000, .rate_min = 4000, .rate_max = 48000, .channels_min = 1, .channels_max = 2, .buffer_bytes_max = 65536, .period_bytes_min = 64, .period_bytes_max = 65536, .periods_min = 1, .periods_max = 1024, .fifo_size = 0 }; /*****************************************************************/ static int snd_als4000_playback_open(struct snd_pcm_substream *substream) { struct snd_sb *chip = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; chip->playback_substream = substream; runtime->hw = snd_als4000_playback; return 0; } static int snd_als4000_playback_close(struct snd_pcm_substream *substream) { struct snd_sb *chip = snd_pcm_substream_chip(substream); chip->playback_substream = NULL; snd_pcm_lib_free_pages(substream); return 0; } static int snd_als4000_capture_open(struct snd_pcm_substream *substream) { struct snd_sb *chip = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; chip->capture_substream = substream; runtime->hw = snd_als4000_capture; return 0; } static int snd_als4000_capture_close(struct snd_pcm_substream *substream) { struct snd_sb *chip = snd_pcm_substream_chip(substream); chip->capture_substream = NULL; snd_pcm_lib_free_pages(substream); return 0; } /******************************************************************/ static const struct snd_pcm_ops snd_als4000_playback_ops = { .open = snd_als4000_playback_open, .close = snd_als4000_playback_close, .ioctl = snd_pcm_lib_ioctl, .hw_params = snd_als4000_hw_params, .hw_free = snd_als4000_hw_free, .prepare = snd_als4000_playback_prepare, .trigger = snd_als4000_playback_trigger, .pointer = snd_als4000_playback_pointer }; static const struct snd_pcm_ops snd_als4000_capture_ops = { .open = snd_als4000_capture_open, .close = snd_als4000_capture_close, .ioctl = snd_pcm_lib_ioctl, .hw_params = snd_als4000_hw_params, .hw_free = snd_als4000_hw_free, .prepare = snd_als4000_capture_prepare, .trigger = snd_als4000_capture_trigger, .pointer = snd_als4000_capture_pointer }; static int snd_als4000_pcm(struct snd_sb *chip, int device) { struct snd_pcm *pcm; int err; err = snd_pcm_new(chip->card, "ALS4000 DSP", device, 1, 1, &pcm); if (err < 0) return err; pcm->private_data = chip; pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX; snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_als4000_playback_ops); snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_als4000_capture_ops); snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci), 64*1024, 64*1024); chip->pcm = pcm; return 0; } /******************************************************************/ static void snd_als4000_set_addr(unsigned long iobase, unsigned int sb_io, unsigned int mpu_io, unsigned int opl_io, unsigned int game_io) { u32 cfg1 = 0; u32 cfg2 = 0; if (mpu_io > 0) cfg2 |= (mpu_io | 1) << 16; if (sb_io > 0) cfg2 |= (sb_io | 1); if (game_io > 0) cfg1 |= (game_io | 1) << 16; if (opl_io > 0) cfg1 |= (opl_io | 1); snd_als4k_gcr_write_addr(iobase, ALS4K_GCRA8_LEGACY_CFG1, cfg1); snd_als4k_gcr_write_addr(iobase, ALS4K_GCRA9_LEGACY_CFG2, cfg2); } static void snd_als4000_configure(struct snd_sb *chip) { u8 tmp; int i; /* do some more configuration */ spin_lock_irq(&chip->mixer_lock); tmp = snd_als4_cr_read(chip, ALS4K_CR0_SB_CONFIG); snd_als4_cr_write(chip, ALS4K_CR0_SB_CONFIG, tmp|ALS4K_CR0_MX80_81_REG_WRITE_ENABLE); /* always select DMA channel 0, since we do not actually use DMA * SPECS_PAGE: 19/20 */ snd_sbmixer_write(chip, SB_DSP4_DMASETUP, SB_DMASETUP_DMA0); snd_als4_cr_write(chip, ALS4K_CR0_SB_CONFIG, tmp & ~ALS4K_CR0_MX80_81_REG_WRITE_ENABLE); spin_unlock_irq(&chip->mixer_lock); spin_lock_irq(&chip->reg_lock); /* enable interrupts */ snd_als4k_gcr_write(chip, ALS4K_GCR8C_MISC_CTRL, ALS4K_GCR8C_IRQ_MASK_CTRL_ENABLE); /* SPECS_PAGE: 39 */ for (i = ALS4K_GCR91_DMA0_ADDR; i <= ALS4K_GCR96_DMA3_MODE_COUNT; ++i) snd_als4k_gcr_write(chip, i, 0); /* enable burst mode to prevent dropouts during high PCI bus usage */ snd_als4k_gcr_write(chip, ALS4K_GCR99_DMA_EMULATION_CTRL, (snd_als4k_gcr_read(chip, ALS4K_GCR99_DMA_EMULATION_CTRL) & ~0x07) | 0x04); spin_unlock_irq(&chip->reg_lock); } #ifdef SUPPORT_JOYSTICK static int snd_als4000_create_gameport(struct snd_card_als4000 *acard, int dev) { struct gameport *gp; struct resource *r; int io_port; if (joystick_port[dev] == 0) return -ENODEV; if (joystick_port[dev] == 1) { /* auto-detect */ for (io_port = 0x200; io_port <= 0x218; io_port += 8) { r = request_region(io_port, 8, "ALS4000 gameport"); if (r) break; } } else { io_port = joystick_port[dev]; r = request_region(io_port, 8, "ALS4000 gameport"); } if (!r) { dev_warn(&acard->pci->dev, "cannot reserve joystick ports\n"); return -EBUSY; } acard->gameport = gp = gameport_allocate_port(); if (!gp) { dev_err(&acard->pci->dev, "cannot allocate memory for gameport\n"); release_and_free_resource(r); return -ENOMEM; } gameport_set_name(gp, "ALS4000 Gameport"); gameport_set_phys(gp, "pci%s/gameport0", pci_name(acard->pci)); gameport_set_dev_parent(gp, &acard->pci->dev); gp->io = io_port; gameport_set_port_data(gp, r); /* Enable legacy joystick port */ snd_als4000_set_addr(acard->iobase, 0, 0, 0, 1); gameport_register_port(acard->gameport); return 0; } static void snd_als4000_free_gameport(struct snd_card_als4000 *acard) { if (acard->gameport) { struct resource *r = gameport_get_port_data(acard->gameport); gameport_unregister_port(acard->gameport); acard->gameport = NULL; /* disable joystick */ snd_als4000_set_addr(acard->iobase, 0, 0, 0, 0); release_and_free_resource(r); } } #else static inline int snd_als4000_create_gameport(struct snd_card_als4000 *acard, int dev) { return -ENOSYS; } static inline void snd_als4000_free_gameport(struct snd_card_als4000 *acard) { } #endif static void snd_card_als4000_free( struct snd_card *card ) { struct snd_card_als4000 *acard = card->private_data; /* make sure that interrupts are disabled */ snd_als4k_gcr_write_addr(acard->iobase, ALS4K_GCR8C_MISC_CTRL, 0); /* free resources */ snd_als4000_free_gameport(acard); pci_release_regions(acard->pci); pci_disable_device(acard->pci); } static int snd_card_als4000_probe(struct pci_dev *pci, const struct pci_device_id *pci_id) { static int dev; struct snd_card *card; struct snd_card_als4000 *acard; unsigned long iobase; struct snd_sb *chip; struct snd_opl3 *opl3; unsigned short word; int err; if (dev >= SNDRV_CARDS) return -ENODEV; if (!enable[dev]) { dev++; return -ENOENT; } /* enable PCI device */ if ((err = pci_enable_device(pci)) < 0) { return err; } /* check, if we can restrict PCI DMA transfers to 24 bits */ if (dma_set_mask(&pci->dev, DMA_BIT_MASK(24)) < 0 || dma_set_coherent_mask(&pci->dev, DMA_BIT_MASK(24)) < 0) { dev_err(&pci->dev, "architecture does not support 24bit PCI busmaster DMA\n"); pci_disable_device(pci); return -ENXIO; } if ((err = pci_request_regions(pci, "ALS4000")) < 0) { pci_disable_device(pci); return err; } iobase = pci_resource_start(pci, 0); pci_read_config_word(pci, PCI_COMMAND, &word); pci_write_config_word(pci, PCI_COMMAND, word | PCI_COMMAND_IO); pci_set_master(pci); err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE, sizeof(*acard) /* private_data: acard */, &card); if (err < 0) { pci_release_regions(pci); pci_disable_device(pci); return err; } acard = card->private_data; acard->pci = pci; acard->iobase = iobase; card->private_free = snd_card_als4000_free; /* disable all legacy ISA stuff */ snd_als4000_set_addr(acard->iobase, 0, 0, 0, 0); if ((err = snd_sbdsp_create(card, iobase + ALS4K_IOB_10_ADLIB_ADDR0, pci->irq, /* internally registered as IRQF_SHARED in case of ALS4000 SB */ snd_als4000_interrupt, -1, -1, SB_HW_ALS4000, &chip)) < 0) { goto out_err; } acard->chip = chip; chip->pci = pci; chip->alt_port = iobase; snd_als4000_configure(chip); strcpy(card->driver, "ALS4000"); strcpy(card->shortname, "Avance Logic ALS4000"); sprintf(card->longname, "%s at 0x%lx, irq %i", card->shortname, chip->alt_port, chip->irq); if ((err = snd_mpu401_uart_new( card, 0, MPU401_HW_ALS4000, iobase + ALS4K_IOB_30_MIDI_DATA, MPU401_INFO_INTEGRATED | MPU401_INFO_IRQ_HOOK, -1, &chip->rmidi)) < 0) { dev_err(&pci->dev, "no MPU-401 device at 0x%lx?\n", iobase + ALS4K_IOB_30_MIDI_DATA); goto out_err; } /* FIXME: ALS4000 has interesting MPU401 configuration features * at ALS4K_CR1A_MPU401_UART_MODE_CONTROL * (pass-thru / UART switching, fast MIDI clock, etc.), * however there doesn't seem to be an ALSA API for this... * SPECS_PAGE: 21 */ if ((err = snd_als4000_pcm(chip, 0)) < 0) { goto out_err; } if ((err = snd_sbmixer_new(chip)) < 0) { goto out_err; } if (snd_opl3_create(card, iobase + ALS4K_IOB_10_ADLIB_ADDR0, iobase + ALS4K_IOB_12_ADLIB_ADDR2, OPL3_HW_AUTO, 1, &opl3) < 0) { dev_err(&pci->dev, "no OPL device at 0x%lx-0x%lx?\n", iobase + ALS4K_IOB_10_ADLIB_ADDR0, iobase + ALS4K_IOB_12_ADLIB_ADDR2); } else { if ((err = snd_opl3_hwdep_new(opl3, 0, 1, NULL)) < 0) { goto out_err; } } snd_als4000_create_gameport(acard, dev); if ((err = snd_card_register(card)) < 0) { goto out_err; } pci_set_drvdata(pci, card); dev++; err = 0; goto out; out_err: snd_card_free(card); out: return err; } static void snd_card_als4000_remove(struct pci_dev *pci) { snd_card_free(pci_get_drvdata(pci)); } #ifdef CONFIG_PM_SLEEP static int snd_als4000_suspend(struct device *dev) { struct snd_card *card = dev_get_drvdata(dev); struct snd_card_als4000 *acard = card->private_data; struct snd_sb *chip = acard->chip; snd_power_change_state(card, SNDRV_CTL_POWER_D3hot); snd_pcm_suspend_all(chip->pcm); snd_sbmixer_suspend(chip); return 0; } static int snd_als4000_resume(struct device *dev) { struct snd_card *card = dev_get_drvdata(dev); struct snd_card_als4000 *acard = card->private_data; struct snd_sb *chip = acard->chip; snd_als4000_configure(chip); snd_sbdsp_reset(chip); snd_sbmixer_resume(chip); #ifdef SUPPORT_JOYSTICK if (acard->gameport) snd_als4000_set_addr(acard->iobase, 0, 0, 0, 1); #endif snd_power_change_state(card, SNDRV_CTL_POWER_D0); return 0; } static SIMPLE_DEV_PM_OPS(snd_als4000_pm, snd_als4000_suspend, snd_als4000_resume); #define SND_ALS4000_PM_OPS &snd_als4000_pm #else #define SND_ALS4000_PM_OPS NULL #endif /* CONFIG_PM_SLEEP */ static struct pci_driver als4000_driver = { .name = KBUILD_MODNAME, .id_table = snd_als4000_ids, .probe = snd_card_als4000_probe, .remove = snd_card_als4000_remove, .driver = { .pm = SND_ALS4000_PM_OPS, }, }; module_pci_driver(als4000_driver);