/* * Driver for Cirrus Logic CS4281 based PCI soundcard * Copyright (c) by Jaroslav Kysela <perex@perex.cz>, * * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include <linux/io.h> #include <linux/delay.h> #include <linux/interrupt.h> #include <linux/init.h> #include <linux/pci.h> #include <linux/slab.h> #include <linux/gameport.h> #include <linux/module.h> #include <sound/core.h> #include <sound/control.h> #include <sound/pcm.h> #include <sound/rawmidi.h> #include <sound/ac97_codec.h> #include <sound/tlv.h> #include <sound/opl3.h> #include <sound/initval.h> MODULE_AUTHOR("Jaroslav Kysela <perex@perex.cz>"); MODULE_DESCRIPTION("Cirrus Logic CS4281"); MODULE_LICENSE("GPL"); MODULE_SUPPORTED_DEVICE("{{Cirrus Logic,CS4281}}"); static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */ static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */ static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable switches */ static bool dual_codec[SNDRV_CARDS]; /* dual codec */ module_param_array(index, int, NULL, 0444); MODULE_PARM_DESC(index, "Index value for CS4281 soundcard."); module_param_array(id, charp, NULL, 0444); MODULE_PARM_DESC(id, "ID string for CS4281 soundcard."); module_param_array(enable, bool, NULL, 0444); MODULE_PARM_DESC(enable, "Enable CS4281 soundcard."); module_param_array(dual_codec, bool, NULL, 0444); MODULE_PARM_DESC(dual_codec, "Secondary Codec ID (0 = disabled)."); /* * Direct registers */ #define CS4281_BA0_SIZE 0x1000 #define CS4281_BA1_SIZE 0x10000 /* * BA0 registers */ #define BA0_HISR 0x0000 /* Host Interrupt Status Register */ #define BA0_HISR_INTENA (1<<31) /* Internal Interrupt Enable Bit */ #define BA0_HISR_MIDI (1<<22) /* MIDI port interrupt */ #define BA0_HISR_FIFOI (1<<20) /* FIFO polled interrupt */ #define BA0_HISR_DMAI (1<<18) /* DMA interrupt (half or end) */ #define BA0_HISR_FIFO(c) (1<<(12+(c))) /* FIFO channel interrupt */ #define BA0_HISR_DMA(c) (1<<(8+(c))) /* DMA channel interrupt */ #define BA0_HISR_GPPI (1<<5) /* General Purpose Input (Primary chip) */ #define BA0_HISR_GPSI (1<<4) /* General Purpose Input (Secondary chip) */ #define BA0_HISR_GP3I (1<<3) /* GPIO3 pin Interrupt */ #define BA0_HISR_GP1I (1<<2) /* GPIO1 pin Interrupt */ #define BA0_HISR_VUPI (1<<1) /* VOLUP pin Interrupt */ #define BA0_HISR_VDNI (1<<0) /* VOLDN pin Interrupt */ #define BA0_HICR 0x0008 /* Host Interrupt Control Register */ #define BA0_HICR_CHGM (1<<1) /* INTENA Change Mask */ #define BA0_HICR_IEV (1<<0) /* INTENA Value */ #define BA0_HICR_EOI (3<<0) /* End of Interrupt command */ #define BA0_HIMR 0x000c /* Host Interrupt Mask Register */ /* Use same contants as for BA0_HISR */ #define BA0_IIER 0x0010 /* ISA Interrupt Enable Register */ #define BA0_HDSR0 0x00f0 /* Host DMA Engine 0 Status Register */ #define BA0_HDSR1 0x00f4 /* Host DMA Engine 1 Status Register */ #define BA0_HDSR2 0x00f8 /* Host DMA Engine 2 Status Register */ #define BA0_HDSR3 0x00fc /* Host DMA Engine 3 Status Register */ #define BA0_HDSR_CH1P (1<<25) /* Channel 1 Pending */ #define BA0_HDSR_CH2P (1<<24) /* Channel 2 Pending */ #define BA0_HDSR_DHTC (1<<17) /* DMA Half Terminal Count */ #define BA0_HDSR_DTC (1<<16) /* DMA Terminal Count */ #define BA0_HDSR_DRUN (1<<15) /* DMA Running */ #define BA0_HDSR_RQ (1<<7) /* Pending Request */ #define BA0_DCA0 0x0110 /* Host DMA Engine 0 Current Address */ #define BA0_DCC0 0x0114 /* Host DMA Engine 0 Current Count */ #define BA0_DBA0 0x0118 /* Host DMA Engine 0 Base Address */ #define BA0_DBC0 0x011c /* Host DMA Engine 0 Base Count */ #define BA0_DCA1 0x0120 /* Host DMA Engine 1 Current Address */ #define BA0_DCC1 0x0124 /* Host DMA Engine 1 Current Count */ #define BA0_DBA1 0x0128 /* Host DMA Engine 1 Base Address */ #define BA0_DBC1 0x012c /* Host DMA Engine 1 Base Count */ #define BA0_DCA2 0x0130 /* Host DMA Engine 2 Current Address */ #define BA0_DCC2 0x0134 /* Host DMA Engine 2 Current Count */ #define BA0_DBA2 0x0138 /* Host DMA Engine 2 Base Address */ #define BA0_DBC2 0x013c /* Host DMA Engine 2 Base Count */ #define BA0_DCA3 0x0140 /* Host DMA Engine 3 Current Address */ #define BA0_DCC3 0x0144 /* Host DMA Engine 3 Current Count */ #define BA0_DBA3 0x0148 /* Host DMA Engine 3 Base Address */ #define BA0_DBC3 0x014c /* Host DMA Engine 3 Base Count */ #define BA0_DMR0 0x0150 /* Host DMA Engine 0 Mode */ #define BA0_DCR0 0x0154 /* Host DMA Engine 0 Command */ #define BA0_DMR1 0x0158 /* Host DMA Engine 1 Mode */ #define BA0_DCR1 0x015c /* Host DMA Engine 1 Command */ #define BA0_DMR2 0x0160 /* Host DMA Engine 2 Mode */ #define BA0_DCR2 0x0164 /* Host DMA Engine 2 Command */ #define BA0_DMR3 0x0168 /* Host DMA Engine 3 Mode */ #define BA0_DCR3 0x016c /* Host DMA Engine 3 Command */ #define BA0_DMR_DMA (1<<29) /* Enable DMA mode */ #define BA0_DMR_POLL (1<<28) /* Enable poll mode */ #define BA0_DMR_TBC (1<<25) /* Transfer By Channel */ #define BA0_DMR_CBC (1<<24) /* Count By Channel (0 = frame resolution) */ #define BA0_DMR_SWAPC (1<<22) /* Swap Left/Right Channels */ #define BA0_DMR_SIZE20 (1<<20) /* Sample is 20-bit */ #define BA0_DMR_USIGN (1<<19) /* Unsigned */ #define BA0_DMR_BEND (1<<18) /* Big Endian */ #define BA0_DMR_MONO (1<<17) /* Mono */ #define BA0_DMR_SIZE8 (1<<16) /* Sample is 8-bit */ #define BA0_DMR_TYPE_DEMAND (0<<6) #define BA0_DMR_TYPE_SINGLE (1<<6) #define BA0_DMR_TYPE_BLOCK (2<<6) #define BA0_DMR_TYPE_CASCADE (3<<6) /* Not supported */ #define BA0_DMR_DEC (1<<5) /* Access Increment (0) or Decrement (1) */ #define BA0_DMR_AUTO (1<<4) /* Auto-Initialize */ #define BA0_DMR_TR_VERIFY (0<<2) /* Verify Transfer */ #define BA0_DMR_TR_WRITE (1<<2) /* Write Transfer */ #define BA0_DMR_TR_READ (2<<2) /* Read Transfer */ #define BA0_DCR_HTCIE (1<<17) /* Half Terminal Count Interrupt */ #define BA0_DCR_TCIE (1<<16) /* Terminal Count Interrupt */ #define BA0_DCR_MSK (1<<0) /* DMA Mask bit */ #define BA0_FCR0 0x0180 /* FIFO Control 0 */ #define BA0_FCR1 0x0184 /* FIFO Control 1 */ #define BA0_FCR2 0x0188 /* FIFO Control 2 */ #define BA0_FCR3 0x018c /* FIFO Control 3 */ #define BA0_FCR_FEN (1<<31) /* FIFO Enable bit */ #define BA0_FCR_DACZ (1<<30) /* DAC Zero */ #define BA0_FCR_PSH (1<<29) /* Previous Sample Hold */ #define BA0_FCR_RS(x) (((x)&0x1f)<<24) /* Right Slot Mapping */ #define BA0_FCR_LS(x) (((x)&0x1f)<<16) /* Left Slot Mapping */ #define BA0_FCR_SZ(x) (((x)&0x7f)<<8) /* FIFO buffer size (in samples) */ #define BA0_FCR_OF(x) (((x)&0x7f)<<0) /* FIFO starting offset (in samples) */ #define BA0_FPDR0 0x0190 /* FIFO Polled Data 0 */ #define BA0_FPDR1 0x0194 /* FIFO Polled Data 1 */ #define BA0_FPDR2 0x0198 /* FIFO Polled Data 2 */ #define BA0_FPDR3 0x019c /* FIFO Polled Data 3 */ #define BA0_FCHS 0x020c /* FIFO Channel Status */ #define BA0_FCHS_RCO(x) (1<<(7+(((x)&3)<<3))) /* Right Channel Out */ #define BA0_FCHS_LCO(x) (1<<(6+(((x)&3)<<3))) /* Left Channel Out */ #define BA0_FCHS_MRP(x) (1<<(5+(((x)&3)<<3))) /* Move Read Pointer */ #define BA0_FCHS_FE(x) (1<<(4+(((x)&3)<<3))) /* FIFO Empty */ #define BA0_FCHS_FF(x) (1<<(3+(((x)&3)<<3))) /* FIFO Full */ #define BA0_FCHS_IOR(x) (1<<(2+(((x)&3)<<3))) /* Internal Overrun Flag */ #define BA0_FCHS_RCI(x) (1<<(1+(((x)&3)<<3))) /* Right Channel In */ #define BA0_FCHS_LCI(x) (1<<(0+(((x)&3)<<3))) /* Left Channel In */ #define BA0_FSIC0 0x0210 /* FIFO Status and Interrupt Control 0 */ #define BA0_FSIC1 0x0214 /* FIFO Status and Interrupt Control 1 */ #define BA0_FSIC2 0x0218 /* FIFO Status and Interrupt Control 2 */ #define BA0_FSIC3 0x021c /* FIFO Status and Interrupt Control 3 */ #define BA0_FSIC_FIC(x) (((x)&0x7f)<<24) /* FIFO Interrupt Count */ #define BA0_FSIC_FORIE (1<<23) /* FIFO OverRun Interrupt Enable */ #define BA0_FSIC_FURIE (1<<22) /* FIFO UnderRun Interrupt Enable */ #define BA0_FSIC_FSCIE (1<<16) /* FIFO Sample Count Interrupt Enable */ #define BA0_FSIC_FSC(x) (((x)&0x7f)<<8) /* FIFO Sample Count */ #define BA0_FSIC_FOR (1<<7) /* FIFO OverRun */ #define BA0_FSIC_FUR (1<<6) /* FIFO UnderRun */ #define BA0_FSIC_FSCR (1<<0) /* FIFO Sample Count Reached */ #define BA0_PMCS 0x0344 /* Power Management Control/Status */ #define BA0_CWPR 0x03e0 /* Configuration Write Protect */ #define BA0_EPPMC 0x03e4 /* Extended PCI Power Management Control */ #define BA0_EPPMC_FPDN (1<<14) /* Full Power DowN */ #define BA0_GPIOR 0x03e8 /* GPIO Pin Interface Register */ #define BA0_SPMC 0x03ec /* Serial Port Power Management Control (& ASDIN2 enable) */ #define BA0_SPMC_GIPPEN (1<<15) /* GP INT Primary PME# Enable */ #define BA0_SPMC_GISPEN (1<<14) /* GP INT Secondary PME# Enable */ #define BA0_SPMC_EESPD (1<<9) /* EEPROM Serial Port Disable */ #define BA0_SPMC_ASDI2E (1<<8) /* ASDIN2 Enable */ #define BA0_SPMC_ASDO (1<<7) /* Asynchronous ASDOUT Assertion */ #define BA0_SPMC_WUP2 (1<<3) /* Wakeup for Secondary Input */ #define BA0_SPMC_WUP1 (1<<2) /* Wakeup for Primary Input */ #define BA0_SPMC_ASYNC (1<<1) /* Asynchronous ASYNC Assertion */ #define BA0_SPMC_RSTN (1<<0) /* Reset Not! */ #define BA0_CFLR 0x03f0 /* Configuration Load Register (EEPROM or BIOS) */ #define BA0_CFLR_DEFAULT 0x00000001 /* CFLR must be in AC97 link mode */ #define BA0_IISR 0x03f4 /* ISA Interrupt Select */ #define BA0_TMS 0x03f8 /* Test Register */ #define BA0_SSVID 0x03fc /* Subsystem ID register */ #define BA0_CLKCR1 0x0400 /* Clock Control Register 1 */ #define BA0_CLKCR1_CLKON (1<<25) /* Read Only */ #define BA0_CLKCR1_DLLRDY (1<<24) /* DLL Ready */ #define BA0_CLKCR1_DLLOS (1<<6) /* DLL Output Select */ #define BA0_CLKCR1_SWCE (1<<5) /* Clock Enable */ #define BA0_CLKCR1_DLLP (1<<4) /* DLL PowerUp */ #define BA0_CLKCR1_DLLSS (((x)&3)<<3) /* DLL Source Select */ #define BA0_FRR 0x0410 /* Feature Reporting Register */ #define BA0_SLT12O 0x041c /* Slot 12 GPIO Output Register for AC-Link */ #define BA0_SERMC 0x0420 /* Serial Port Master Control */ #define BA0_SERMC_FCRN (1<<27) /* Force Codec Ready Not */ #define BA0_SERMC_ODSEN2 (1<<25) /* On-Demand Support Enable ASDIN2 */ #define BA0_SERMC_ODSEN1 (1<<24) /* On-Demand Support Enable ASDIN1 */ #define BA0_SERMC_SXLB (1<<21) /* ASDIN2 to ASDOUT Loopback */ #define BA0_SERMC_SLB (1<<20) /* ASDOUT to ASDIN2 Loopback */ #define BA0_SERMC_LOVF (1<<19) /* Loopback Output Valid Frame bit */ #define BA0_SERMC_TCID(x) (((x)&3)<<16) /* Target Secondary Codec ID */ #define BA0_SERMC_PXLB (5<<1) /* Primary Port External Loopback */ #define BA0_SERMC_PLB (4<<1) /* Primary Port Internal Loopback */ #define BA0_SERMC_PTC (7<<1) /* Port Timing Configuration */ #define BA0_SERMC_PTC_AC97 (1<<1) /* AC97 mode */ #define BA0_SERMC_MSPE (1<<0) /* Master Serial Port Enable */ #define BA0_SERC1 0x0428 /* Serial Port Configuration 1 */ #define BA0_SERC1_SO1F(x) (((x)&7)>>1) /* Primary Output Port Format */ #define BA0_SERC1_AC97 (1<<1) #define BA0_SERC1_SO1EN (1<<0) /* Primary Output Port Enable */ #define BA0_SERC2 0x042c /* Serial Port Configuration 2 */ #define BA0_SERC2_SI1F(x) (((x)&7)>>1) /* Primary Input Port Format */ #define BA0_SERC2_AC97 (1<<1) #define BA0_SERC2_SI1EN (1<<0) /* Primary Input Port Enable */ #define BA0_SLT12M 0x045c /* Slot 12 Monitor Register for Primary AC-Link */ #define BA0_ACCTL 0x0460 /* AC'97 Control */ #define BA0_ACCTL_TC (1<<6) /* Target Codec */ #define BA0_ACCTL_CRW (1<<4) /* 0=Write, 1=Read Command */ #define BA0_ACCTL_DCV (1<<3) /* Dynamic Command Valid */ #define BA0_ACCTL_VFRM (1<<2) /* Valid Frame */ #define BA0_ACCTL_ESYN (1<<1) /* Enable Sync */ #define BA0_ACSTS 0x0464 /* AC'97 Status */ #define BA0_ACSTS_VSTS (1<<1) /* Valid Status */ #define BA0_ACSTS_CRDY (1<<0) /* Codec Ready */ #define BA0_ACOSV 0x0468 /* AC'97 Output Slot Valid */ #define BA0_ACOSV_SLV(x) (1<<((x)-3)) #define BA0_ACCAD 0x046c /* AC'97 Command Address */ #define BA0_ACCDA 0x0470 /* AC'97 Command Data */ #define BA0_ACISV 0x0474 /* AC'97 Input Slot Valid */ #define BA0_ACISV_SLV(x) (1<<((x)-3)) #define BA0_ACSAD 0x0478 /* AC'97 Status Address */ #define BA0_ACSDA 0x047c /* AC'97 Status Data */ #define BA0_JSPT 0x0480 /* Joystick poll/trigger */ #define BA0_JSCTL 0x0484 /* Joystick control */ #define BA0_JSC1 0x0488 /* Joystick control */ #define BA0_JSC2 0x048c /* Joystick control */ #define BA0_JSIO 0x04a0 #define BA0_MIDCR 0x0490 /* MIDI Control */ #define BA0_MIDCR_MRST (1<<5) /* Reset MIDI Interface */ #define BA0_MIDCR_MLB (1<<4) /* MIDI Loop Back Enable */ #define BA0_MIDCR_TIE (1<<3) /* MIDI Transmuit Interrupt Enable */ #define BA0_MIDCR_RIE (1<<2) /* MIDI Receive Interrupt Enable */ #define BA0_MIDCR_RXE (1<<1) /* MIDI Receive Enable */ #define BA0_MIDCR_TXE (1<<0) /* MIDI Transmit Enable */ #define BA0_MIDCMD 0x0494 /* MIDI Command (wo) */ #define BA0_MIDSR 0x0494 /* MIDI Status (ro) */ #define BA0_MIDSR_RDA (1<<15) /* Sticky bit (RBE 1->0) */ #define BA0_MIDSR_TBE (1<<14) /* Sticky bit (TBF 0->1) */ #define BA0_MIDSR_RBE (1<<7) /* Receive Buffer Empty */ #define BA0_MIDSR_TBF (1<<6) /* Transmit Buffer Full */ #define BA0_MIDWP 0x0498 /* MIDI Write */ #define BA0_MIDRP 0x049c /* MIDI Read (ro) */ #define BA0_AODSD1 0x04a8 /* AC'97 On-Demand Slot Disable for primary link (ro) */ #define BA0_AODSD1_NDS(x) (1<<((x)-3)) #define BA0_AODSD2 0x04ac /* AC'97 On-Demand Slot Disable for secondary link (ro) */ #define BA0_AODSD2_NDS(x) (1<<((x)-3)) #define BA0_CFGI 0x04b0 /* Configure Interface (EEPROM interface) */ #define BA0_SLT12M2 0x04dc /* Slot 12 Monitor Register 2 for secondary AC-link */ #define BA0_ACSTS2 0x04e4 /* AC'97 Status Register 2 */ #define BA0_ACISV2 0x04f4 /* AC'97 Input Slot Valid Register 2 */ #define BA0_ACSAD2 0x04f8 /* AC'97 Status Address Register 2 */ #define BA0_ACSDA2 0x04fc /* AC'97 Status Data Register 2 */ #define BA0_FMSR 0x0730 /* FM Synthesis Status (ro) */ #define BA0_B0AP 0x0730 /* FM Bank 0 Address Port (wo) */ #define BA0_FMDP 0x0734 /* FM Data Port */ #define BA0_B1AP 0x0738 /* FM Bank 1 Address Port */ #define BA0_B1DP 0x073c /* FM Bank 1 Data Port */ #define BA0_SSPM 0x0740 /* Sound System Power Management */ #define BA0_SSPM_MIXEN (1<<6) /* Playback SRC + FM/Wavetable MIX */ #define BA0_SSPM_CSRCEN (1<<5) /* Capture Sample Rate Converter Enable */ #define BA0_SSPM_PSRCEN (1<<4) /* Playback Sample Rate Converter Enable */ #define BA0_SSPM_JSEN (1<<3) /* Joystick Enable */ #define BA0_SSPM_ACLEN (1<<2) /* Serial Port Engine and AC-Link Enable */ #define BA0_SSPM_FMEN (1<<1) /* FM Synthesis Block Enable */ #define BA0_DACSR 0x0744 /* DAC Sample Rate - Playback SRC */ #define BA0_ADCSR 0x0748 /* ADC Sample Rate - Capture SRC */ #define BA0_SSCR 0x074c /* Sound System Control Register */ #define BA0_SSCR_HVS1 (1<<23) /* Hardwave Volume Step (0=1,1=2) */ #define BA0_SSCR_MVCS (1<<19) /* Master Volume Codec Select */ #define BA0_SSCR_MVLD (1<<18) /* Master Volume Line Out Disable */ #define BA0_SSCR_MVAD (1<<17) /* Master Volume Alternate Out Disable */ #define BA0_SSCR_MVMD (1<<16) /* Master Volume Mono Out Disable */ #define BA0_SSCR_XLPSRC (1<<8) /* External SRC Loopback Mode */ #define BA0_SSCR_LPSRC (1<<7) /* SRC Loopback Mode */ #define BA0_SSCR_CDTX (1<<5) /* CD Transfer Data */ #define BA0_SSCR_HVC (1<<3) /* Harware Volume Control Enable */ #define BA0_FMLVC 0x0754 /* FM Synthesis Left Volume Control */ #define BA0_FMRVC 0x0758 /* FM Synthesis Right Volume Control */ #define BA0_SRCSA 0x075c /* SRC Slot Assignments */ #define BA0_PPLVC 0x0760 /* PCM Playback Left Volume Control */ #define BA0_PPRVC 0x0764 /* PCM Playback Right Volume Control */ #define BA0_PASR 0x0768 /* playback sample rate */ #define BA0_CASR 0x076C /* capture sample rate */ /* Source Slot Numbers - Playback */ #define SRCSLOT_LEFT_PCM_PLAYBACK 0 #define SRCSLOT_RIGHT_PCM_PLAYBACK 1 #define SRCSLOT_PHONE_LINE_1_DAC 2 #define SRCSLOT_CENTER_PCM_PLAYBACK 3 #define SRCSLOT_LEFT_SURROUND_PCM_PLAYBACK 4 #define SRCSLOT_RIGHT_SURROUND_PCM_PLAYBACK 5 #define SRCSLOT_LFE_PCM_PLAYBACK 6 #define SRCSLOT_PHONE_LINE_2_DAC 7 #define SRCSLOT_HEADSET_DAC 8 #define SRCSLOT_LEFT_WT 29 /* invalid for BA0_SRCSA */ #define SRCSLOT_RIGHT_WT 30 /* invalid for BA0_SRCSA */ /* Source Slot Numbers - Capture */ #define SRCSLOT_LEFT_PCM_RECORD 10 #define SRCSLOT_RIGHT_PCM_RECORD 11 #define SRCSLOT_PHONE_LINE_1_ADC 12 #define SRCSLOT_MIC_ADC 13 #define SRCSLOT_PHONE_LINE_2_ADC 17 #define SRCSLOT_HEADSET_ADC 18 #define SRCSLOT_SECONDARY_LEFT_PCM_RECORD 20 #define SRCSLOT_SECONDARY_RIGHT_PCM_RECORD 21 #define SRCSLOT_SECONDARY_PHONE_LINE_1_ADC 22 #define SRCSLOT_SECONDARY_MIC_ADC 23 #define SRCSLOT_SECONDARY_PHONE_LINE_2_ADC 27 #define SRCSLOT_SECONDARY_HEADSET_ADC 28 /* Source Slot Numbers - Others */ #define SRCSLOT_POWER_DOWN 31 /* MIDI modes */ #define CS4281_MODE_OUTPUT (1<<0) #define CS4281_MODE_INPUT (1<<1) /* joystick bits */ /* Bits for JSPT */ #define JSPT_CAX 0x00000001 #define JSPT_CAY 0x00000002 #define JSPT_CBX 0x00000004 #define JSPT_CBY 0x00000008 #define JSPT_BA1 0x00000010 #define JSPT_BA2 0x00000020 #define JSPT_BB1 0x00000040 #define JSPT_BB2 0x00000080 /* Bits for JSCTL */ #define JSCTL_SP_MASK 0x00000003 #define JSCTL_SP_SLOW 0x00000000 #define JSCTL_SP_MEDIUM_SLOW 0x00000001 #define JSCTL_SP_MEDIUM_FAST 0x00000002 #define JSCTL_SP_FAST 0x00000003 #define JSCTL_ARE 0x00000004 /* Data register pairs masks */ #define JSC1_Y1V_MASK 0x0000FFFF #define JSC1_X1V_MASK 0xFFFF0000 #define JSC1_Y1V_SHIFT 0 #define JSC1_X1V_SHIFT 16 #define JSC2_Y2V_MASK 0x0000FFFF #define JSC2_X2V_MASK 0xFFFF0000 #define JSC2_Y2V_SHIFT 0 #define JSC2_X2V_SHIFT 16 /* JS GPIO */ #define JSIO_DAX 0x00000001 #define JSIO_DAY 0x00000002 #define JSIO_DBX 0x00000004 #define JSIO_DBY 0x00000008 #define JSIO_AXOE 0x00000010 #define JSIO_AYOE 0x00000020 #define JSIO_BXOE 0x00000040 #define JSIO_BYOE 0x00000080 /* * */ struct cs4281_dma { struct snd_pcm_substream *substream; unsigned int regDBA; /* offset to DBA register */ unsigned int regDCA; /* offset to DCA register */ unsigned int regDBC; /* offset to DBC register */ unsigned int regDCC; /* offset to DCC register */ unsigned int regDMR; /* offset to DMR register */ unsigned int regDCR; /* offset to DCR register */ unsigned int regHDSR; /* offset to HDSR register */ unsigned int regFCR; /* offset to FCR register */ unsigned int regFSIC; /* offset to FSIC register */ unsigned int valDMR; /* DMA mode */ unsigned int valDCR; /* DMA command */ unsigned int valFCR; /* FIFO control */ unsigned int fifo_offset; /* FIFO offset within BA1 */ unsigned char left_slot; /* FIFO left slot */ unsigned char right_slot; /* FIFO right slot */ int frag; /* period number */ }; #define SUSPEND_REGISTERS 20 struct cs4281 { int irq; void __iomem *ba0; /* virtual (accessible) address */ void __iomem *ba1; /* virtual (accessible) address */ unsigned long ba0_addr; unsigned long ba1_addr; int dual_codec; struct snd_ac97_bus *ac97_bus; struct snd_ac97 *ac97; struct snd_ac97 *ac97_secondary; struct pci_dev *pci; struct snd_card *card; struct snd_pcm *pcm; struct snd_rawmidi *rmidi; struct snd_rawmidi_substream *midi_input; struct snd_rawmidi_substream *midi_output; struct cs4281_dma dma[4]; unsigned char src_left_play_slot; unsigned char src_right_play_slot; unsigned char src_left_rec_slot; unsigned char src_right_rec_slot; unsigned int spurious_dhtc_irq; unsigned int spurious_dtc_irq; spinlock_t reg_lock; unsigned int midcr; unsigned int uartm; struct gameport *gameport; #ifdef CONFIG_PM_SLEEP u32 suspend_regs[SUSPEND_REGISTERS]; #endif }; static irqreturn_t snd_cs4281_interrupt(int irq, void *dev_id); static const struct pci_device_id snd_cs4281_ids[] = { { PCI_VDEVICE(CIRRUS, 0x6005), 0, }, /* CS4281 */ { 0, } }; MODULE_DEVICE_TABLE(pci, snd_cs4281_ids); /* * constants */ #define CS4281_FIFO_SIZE 32 /* * common I/O routines */ static inline void snd_cs4281_pokeBA0(struct cs4281 *chip, unsigned long offset, unsigned int val) { writel(val, chip->ba0 + offset); } static inline unsigned int snd_cs4281_peekBA0(struct cs4281 *chip, unsigned long offset) { return readl(chip->ba0 + offset); } static void snd_cs4281_ac97_write(struct snd_ac97 *ac97, unsigned short reg, unsigned short val) { /* * 1. Write ACCAD = Command Address Register = 46Ch for AC97 register address * 2. Write ACCDA = Command Data Register = 470h for data to write to AC97 * 3. Write ACCTL = Control Register = 460h for initiating the write * 4. Read ACCTL = 460h, DCV should be reset by now and 460h = 07h * 5. if DCV not cleared, break and return error */ struct cs4281 *chip = ac97->private_data; int count; /* * Setup the AC97 control registers on the CS461x to send the * appropriate command to the AC97 to perform the read. * ACCAD = Command Address Register = 46Ch * ACCDA = Command Data Register = 470h * ACCTL = Control Register = 460h * set DCV - will clear when process completed * reset CRW - Write command * set VFRM - valid frame enabled * set ESYN - ASYNC generation enabled * set RSTN - ARST# inactive, AC97 codec not reset */ snd_cs4281_pokeBA0(chip, BA0_ACCAD, reg); snd_cs4281_pokeBA0(chip, BA0_ACCDA, val); snd_cs4281_pokeBA0(chip, BA0_ACCTL, BA0_ACCTL_DCV | BA0_ACCTL_VFRM | BA0_ACCTL_ESYN | (ac97->num ? BA0_ACCTL_TC : 0)); for (count = 0; count < 2000; count++) { /* * First, we want to wait for a short time. */ udelay(10); /* * Now, check to see if the write has completed. * ACCTL = 460h, DCV should be reset by now and 460h = 07h */ if (!(snd_cs4281_peekBA0(chip, BA0_ACCTL) & BA0_ACCTL_DCV)) { return; } } dev_err(chip->card->dev, "AC'97 write problem, reg = 0x%x, val = 0x%x\n", reg, val); } static unsigned short snd_cs4281_ac97_read(struct snd_ac97 *ac97, unsigned short reg) { struct cs4281 *chip = ac97->private_data; int count; unsigned short result; // FIXME: volatile is necessary in the following due to a bug of // some gcc versions volatile int ac97_num = ((volatile struct snd_ac97 *)ac97)->num; /* * 1. Write ACCAD = Command Address Register = 46Ch for AC97 register address * 2. Write ACCDA = Command Data Register = 470h for data to write to AC97 * 3. Write ACCTL = Control Register = 460h for initiating the write * 4. Read ACCTL = 460h, DCV should be reset by now and 460h = 17h * 5. if DCV not cleared, break and return error * 6. Read ACSTS = Status Register = 464h, check VSTS bit */ snd_cs4281_peekBA0(chip, ac97_num ? BA0_ACSDA2 : BA0_ACSDA); /* * Setup the AC97 control registers on the CS461x to send the * appropriate command to the AC97 to perform the read. * ACCAD = Command Address Register = 46Ch * ACCDA = Command Data Register = 470h * ACCTL = Control Register = 460h * set DCV - will clear when process completed * set CRW - Read command * set VFRM - valid frame enabled * set ESYN - ASYNC generation enabled * set RSTN - ARST# inactive, AC97 codec not reset */ snd_cs4281_pokeBA0(chip, BA0_ACCAD, reg); snd_cs4281_pokeBA0(chip, BA0_ACCDA, 0); snd_cs4281_pokeBA0(chip, BA0_ACCTL, BA0_ACCTL_DCV | BA0_ACCTL_CRW | BA0_ACCTL_VFRM | BA0_ACCTL_ESYN | (ac97_num ? BA0_ACCTL_TC : 0)); /* * Wait for the read to occur. */ for (count = 0; count < 500; count++) { /* * First, we want to wait for a short time. */ udelay(10); /* * Now, check to see if the read has completed. * ACCTL = 460h, DCV should be reset by now and 460h = 17h */ if (!(snd_cs4281_peekBA0(chip, BA0_ACCTL) & BA0_ACCTL_DCV)) goto __ok1; } dev_err(chip->card->dev, "AC'97 read problem (ACCTL_DCV), reg = 0x%x\n", reg); result = 0xffff; goto __end; __ok1: /* * Wait for the valid status bit to go active. */ for (count = 0; count < 100; count++) { /* * Read the AC97 status register. * ACSTS = Status Register = 464h * VSTS - Valid Status */ if (snd_cs4281_peekBA0(chip, ac97_num ? BA0_ACSTS2 : BA0_ACSTS) & BA0_ACSTS_VSTS) goto __ok2; udelay(10); } dev_err(chip->card->dev, "AC'97 read problem (ACSTS_VSTS), reg = 0x%x\n", reg); result = 0xffff; goto __end; __ok2: /* * Read the data returned from the AC97 register. * ACSDA = Status Data Register = 474h */ result = snd_cs4281_peekBA0(chip, ac97_num ? BA0_ACSDA2 : BA0_ACSDA); __end: return result; } /* * PCM part */ static int snd_cs4281_trigger(struct snd_pcm_substream *substream, int cmd) { struct cs4281_dma *dma = substream->runtime->private_data; struct cs4281 *chip = snd_pcm_substream_chip(substream); spin_lock(&chip->reg_lock); switch (cmd) { case SNDRV_PCM_TRIGGER_PAUSE_PUSH: dma->valDCR |= BA0_DCR_MSK; dma->valFCR |= BA0_FCR_FEN; break; case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: dma->valDCR &= ~BA0_DCR_MSK; dma->valFCR &= ~BA0_FCR_FEN; break; case SNDRV_PCM_TRIGGER_START: case SNDRV_PCM_TRIGGER_RESUME: snd_cs4281_pokeBA0(chip, dma->regDMR, dma->valDMR & ~BA0_DMR_DMA); dma->valDMR |= BA0_DMR_DMA; dma->valDCR &= ~BA0_DCR_MSK; dma->valFCR |= BA0_FCR_FEN; break; case SNDRV_PCM_TRIGGER_STOP: case SNDRV_PCM_TRIGGER_SUSPEND: dma->valDMR &= ~(BA0_DMR_DMA|BA0_DMR_POLL); dma->valDCR |= BA0_DCR_MSK; dma->valFCR &= ~BA0_FCR_FEN; /* Leave wave playback FIFO enabled for FM */ if (dma->regFCR != BA0_FCR0) dma->valFCR &= ~BA0_FCR_FEN; break; default: spin_unlock(&chip->reg_lock); return -EINVAL; } snd_cs4281_pokeBA0(chip, dma->regDMR, dma->valDMR); snd_cs4281_pokeBA0(chip, dma->regFCR, dma->valFCR); snd_cs4281_pokeBA0(chip, dma->regDCR, dma->valDCR); spin_unlock(&chip->reg_lock); return 0; } static unsigned int snd_cs4281_rate(unsigned int rate, unsigned int *real_rate) { unsigned int val = ~0; if (real_rate) *real_rate = rate; /* special "hardcoded" rates */ switch (rate) { case 8000: return 5; case 11025: return 4; case 16000: return 3; case 22050: return 2; case 44100: return 1; case 48000: return 0; default: goto __variable; } __variable: val = 1536000 / rate; if (real_rate) *real_rate = 1536000 / val; return val; } static void snd_cs4281_mode(struct cs4281 *chip, struct cs4281_dma *dma, struct snd_pcm_runtime *runtime, int capture, int src) { int rec_mono; dma->valDMR = BA0_DMR_TYPE_SINGLE | BA0_DMR_AUTO | (capture ? BA0_DMR_TR_WRITE : BA0_DMR_TR_READ); if (runtime->channels == 1) dma->valDMR |= BA0_DMR_MONO; if (snd_pcm_format_unsigned(runtime->format) > 0) dma->valDMR |= BA0_DMR_USIGN; if (snd_pcm_format_big_endian(runtime->format) > 0) dma->valDMR |= BA0_DMR_BEND; switch (snd_pcm_format_width(runtime->format)) { case 8: dma->valDMR |= BA0_DMR_SIZE8; if (runtime->channels == 1) dma->valDMR |= BA0_DMR_SWAPC; break; case 32: dma->valDMR |= BA0_DMR_SIZE20; break; } dma->frag = 0; /* for workaround */ dma->valDCR = BA0_DCR_TCIE | BA0_DCR_MSK; if (runtime->buffer_size != runtime->period_size) dma->valDCR |= BA0_DCR_HTCIE; /* Initialize DMA */ snd_cs4281_pokeBA0(chip, dma->regDBA, runtime->dma_addr); snd_cs4281_pokeBA0(chip, dma->regDBC, runtime->buffer_size - 1); rec_mono = (chip->dma[1].valDMR & BA0_DMR_MONO) == BA0_DMR_MONO; snd_cs4281_pokeBA0(chip, BA0_SRCSA, (chip->src_left_play_slot << 0) | (chip->src_right_play_slot << 8) | (chip->src_left_rec_slot << 16) | ((rec_mono ? 31 : chip->src_right_rec_slot) << 24)); if (!src) goto __skip_src; if (!capture) { if (dma->left_slot == chip->src_left_play_slot) { unsigned int val = snd_cs4281_rate(runtime->rate, NULL); snd_BUG_ON(dma->right_slot != chip->src_right_play_slot); snd_cs4281_pokeBA0(chip, BA0_DACSR, val); } } else { if (dma->left_slot == chip->src_left_rec_slot) { unsigned int val = snd_cs4281_rate(runtime->rate, NULL); snd_BUG_ON(dma->right_slot != chip->src_right_rec_slot); snd_cs4281_pokeBA0(chip, BA0_ADCSR, val); } } __skip_src: /* Deactivate wave playback FIFO before changing slot assignments */ if (dma->regFCR == BA0_FCR0) snd_cs4281_pokeBA0(chip, dma->regFCR, snd_cs4281_peekBA0(chip, dma->regFCR) & ~BA0_FCR_FEN); /* Initialize FIFO */ dma->valFCR = BA0_FCR_LS(dma->left_slot) | BA0_FCR_RS(capture && (dma->valDMR & BA0_DMR_MONO) ? 31 : dma->right_slot) | BA0_FCR_SZ(CS4281_FIFO_SIZE) | BA0_FCR_OF(dma->fifo_offset); snd_cs4281_pokeBA0(chip, dma->regFCR, dma->valFCR | (capture ? BA0_FCR_PSH : 0)); /* Activate FIFO again for FM playback */ if (dma->regFCR == BA0_FCR0) snd_cs4281_pokeBA0(chip, dma->regFCR, dma->valFCR | BA0_FCR_FEN); /* Clear FIFO Status and Interrupt Control Register */ snd_cs4281_pokeBA0(chip, dma->regFSIC, 0); } static int snd_cs4281_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *hw_params) { return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params)); } static int snd_cs4281_hw_free(struct snd_pcm_substream *substream) { return snd_pcm_lib_free_pages(substream); } static int snd_cs4281_playback_prepare(struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; struct cs4281_dma *dma = runtime->private_data; struct cs4281 *chip = snd_pcm_substream_chip(substream); spin_lock_irq(&chip->reg_lock); snd_cs4281_mode(chip, dma, runtime, 0, 1); spin_unlock_irq(&chip->reg_lock); return 0; } static int snd_cs4281_capture_prepare(struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; struct cs4281_dma *dma = runtime->private_data; struct cs4281 *chip = snd_pcm_substream_chip(substream); spin_lock_irq(&chip->reg_lock); snd_cs4281_mode(chip, dma, runtime, 1, 1); spin_unlock_irq(&chip->reg_lock); return 0; } static snd_pcm_uframes_t snd_cs4281_pointer(struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; struct cs4281_dma *dma = runtime->private_data; struct cs4281 *chip = snd_pcm_substream_chip(substream); /* dev_dbg(chip->card->dev, "DCC = 0x%x, buffer_size = 0x%x, jiffies = %li\n", snd_cs4281_peekBA0(chip, dma->regDCC), runtime->buffer_size, jiffies); */ return runtime->buffer_size - snd_cs4281_peekBA0(chip, dma->regDCC) - 1; } static struct snd_pcm_hardware snd_cs4281_playback = { .info = SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME, .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U16_LE | SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_BE | SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_U32_LE | SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_U32_BE | SNDRV_PCM_FMTBIT_S32_BE, .rates = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000, .rate_min = 4000, .rate_max = 48000, .channels_min = 1, .channels_max = 2, .buffer_bytes_max = (512*1024), .period_bytes_min = 64, .period_bytes_max = (512*1024), .periods_min = 1, .periods_max = 2, .fifo_size = CS4281_FIFO_SIZE, }; static struct snd_pcm_hardware snd_cs4281_capture = { .info = SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME, .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U16_LE | SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_BE | SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_U32_LE | SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_U32_BE | SNDRV_PCM_FMTBIT_S32_BE, .rates = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000, .rate_min = 4000, .rate_max = 48000, .channels_min = 1, .channels_max = 2, .buffer_bytes_max = (512*1024), .period_bytes_min = 64, .period_bytes_max = (512*1024), .periods_min = 1, .periods_max = 2, .fifo_size = CS4281_FIFO_SIZE, }; static int snd_cs4281_playback_open(struct snd_pcm_substream *substream) { struct cs4281 *chip = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; struct cs4281_dma *dma; dma = &chip->dma[0]; dma->substream = substream; dma->left_slot = 0; dma->right_slot = 1; runtime->private_data = dma; runtime->hw = snd_cs4281_playback; /* should be detected from the AC'97 layer, but it seems that although CS4297A rev B reports 18-bit ADC resolution, samples are 20-bit */ snd_pcm_hw_constraint_msbits(runtime, 0, 32, 20); return 0; } static int snd_cs4281_capture_open(struct snd_pcm_substream *substream) { struct cs4281 *chip = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; struct cs4281_dma *dma; dma = &chip->dma[1]; dma->substream = substream; dma->left_slot = 10; dma->right_slot = 11; runtime->private_data = dma; runtime->hw = snd_cs4281_capture; /* should be detected from the AC'97 layer, but it seems that although CS4297A rev B reports 18-bit ADC resolution, samples are 20-bit */ snd_pcm_hw_constraint_msbits(runtime, 0, 32, 20); return 0; } static int snd_cs4281_playback_close(struct snd_pcm_substream *substream) { struct cs4281_dma *dma = substream->runtime->private_data; dma->substream = NULL; return 0; } static int snd_cs4281_capture_close(struct snd_pcm_substream *substream) { struct cs4281_dma *dma = substream->runtime->private_data; dma->substream = NULL; return 0; } static const struct snd_pcm_ops snd_cs4281_playback_ops = { .open = snd_cs4281_playback_open, .close = snd_cs4281_playback_close, .ioctl = snd_pcm_lib_ioctl, .hw_params = snd_cs4281_hw_params, .hw_free = snd_cs4281_hw_free, .prepare = snd_cs4281_playback_prepare, .trigger = snd_cs4281_trigger, .pointer = snd_cs4281_pointer, }; static const struct snd_pcm_ops snd_cs4281_capture_ops = { .open = snd_cs4281_capture_open, .close = snd_cs4281_capture_close, .ioctl = snd_pcm_lib_ioctl, .hw_params = snd_cs4281_hw_params, .hw_free = snd_cs4281_hw_free, .prepare = snd_cs4281_capture_prepare, .trigger = snd_cs4281_trigger, .pointer = snd_cs4281_pointer, }; static int snd_cs4281_pcm(struct cs4281 *chip, int device) { struct snd_pcm *pcm; int err; err = snd_pcm_new(chip->card, "CS4281", device, 1, 1, &pcm); if (err < 0) return err; snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cs4281_playback_ops); snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cs4281_capture_ops); pcm->private_data = chip; pcm->info_flags = 0; strcpy(pcm->name, "CS4281"); chip->pcm = pcm; snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci), 64*1024, 512*1024); return 0; } /* * Mixer section */ #define CS_VOL_MASK 0x1f static int snd_cs4281_info_volume(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 2; uinfo->value.integer.min = 0; uinfo->value.integer.max = CS_VOL_MASK; return 0; } static int snd_cs4281_get_volume(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct cs4281 *chip = snd_kcontrol_chip(kcontrol); int regL = (kcontrol->private_value >> 16) & 0xffff; int regR = kcontrol->private_value & 0xffff; int volL, volR; volL = CS_VOL_MASK - (snd_cs4281_peekBA0(chip, regL) & CS_VOL_MASK); volR = CS_VOL_MASK - (snd_cs4281_peekBA0(chip, regR) & CS_VOL_MASK); ucontrol->value.integer.value[0] = volL; ucontrol->value.integer.value[1] = volR; return 0; } static int snd_cs4281_put_volume(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct cs4281 *chip = snd_kcontrol_chip(kcontrol); int change = 0; int regL = (kcontrol->private_value >> 16) & 0xffff; int regR = kcontrol->private_value & 0xffff; int volL, volR; volL = CS_VOL_MASK - (snd_cs4281_peekBA0(chip, regL) & CS_VOL_MASK); volR = CS_VOL_MASK - (snd_cs4281_peekBA0(chip, regR) & CS_VOL_MASK); if (ucontrol->value.integer.value[0] != volL) { volL = CS_VOL_MASK - (ucontrol->value.integer.value[0] & CS_VOL_MASK); snd_cs4281_pokeBA0(chip, regL, volL); change = 1; } if (ucontrol->value.integer.value[1] != volR) { volR = CS_VOL_MASK - (ucontrol->value.integer.value[1] & CS_VOL_MASK); snd_cs4281_pokeBA0(chip, regR, volR); change = 1; } return change; } static const DECLARE_TLV_DB_SCALE(db_scale_dsp, -4650, 150, 0); static struct snd_kcontrol_new snd_cs4281_fm_vol = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Synth Playback Volume", .info = snd_cs4281_info_volume, .get = snd_cs4281_get_volume, .put = snd_cs4281_put_volume, .private_value = ((BA0_FMLVC << 16) | BA0_FMRVC), .tlv = { .p = db_scale_dsp }, }; static struct snd_kcontrol_new snd_cs4281_pcm_vol = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "PCM Stream Playback Volume", .info = snd_cs4281_info_volume, .get = snd_cs4281_get_volume, .put = snd_cs4281_put_volume, .private_value = ((BA0_PPLVC << 16) | BA0_PPRVC), .tlv = { .p = db_scale_dsp }, }; static void snd_cs4281_mixer_free_ac97_bus(struct snd_ac97_bus *bus) { struct cs4281 *chip = bus->private_data; chip->ac97_bus = NULL; } static void snd_cs4281_mixer_free_ac97(struct snd_ac97 *ac97) { struct cs4281 *chip = ac97->private_data; if (ac97->num) chip->ac97_secondary = NULL; else chip->ac97 = NULL; } static int snd_cs4281_mixer(struct cs4281 *chip) { struct snd_card *card = chip->card; struct snd_ac97_template ac97; int err; static struct snd_ac97_bus_ops ops = { .write = snd_cs4281_ac97_write, .read = snd_cs4281_ac97_read, }; if ((err = snd_ac97_bus(card, 0, &ops, chip, &chip->ac97_bus)) < 0) return err; chip->ac97_bus->private_free = snd_cs4281_mixer_free_ac97_bus; memset(&ac97, 0, sizeof(ac97)); ac97.private_data = chip; ac97.private_free = snd_cs4281_mixer_free_ac97; if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97)) < 0) return err; if (chip->dual_codec) { ac97.num = 1; if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97_secondary)) < 0) return err; } if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_cs4281_fm_vol, chip))) < 0) return err; if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_cs4281_pcm_vol, chip))) < 0) return err; return 0; } /* * proc interface */ static void snd_cs4281_proc_read(struct snd_info_entry *entry, struct snd_info_buffer *buffer) { struct cs4281 *chip = entry->private_data; snd_iprintf(buffer, "Cirrus Logic CS4281\n\n"); snd_iprintf(buffer, "Spurious half IRQs : %u\n", chip->spurious_dhtc_irq); snd_iprintf(buffer, "Spurious end IRQs : %u\n", chip->spurious_dtc_irq); } static ssize_t snd_cs4281_BA0_read(struct snd_info_entry *entry, void *file_private_data, struct file *file, char __user *buf, size_t count, loff_t pos) { struct cs4281 *chip = entry->private_data; if (copy_to_user_fromio(buf, chip->ba0 + pos, count)) return -EFAULT; return count; } static ssize_t snd_cs4281_BA1_read(struct snd_info_entry *entry, void *file_private_data, struct file *file, char __user *buf, size_t count, loff_t pos) { struct cs4281 *chip = entry->private_data; if (copy_to_user_fromio(buf, chip->ba1 + pos, count)) return -EFAULT; return count; } static struct snd_info_entry_ops snd_cs4281_proc_ops_BA0 = { .read = snd_cs4281_BA0_read, }; static struct snd_info_entry_ops snd_cs4281_proc_ops_BA1 = { .read = snd_cs4281_BA1_read, }; static void snd_cs4281_proc_init(struct cs4281 *chip) { struct snd_info_entry *entry; if (! snd_card_proc_new(chip->card, "cs4281", &entry)) snd_info_set_text_ops(entry, chip, snd_cs4281_proc_read); if (! snd_card_proc_new(chip->card, "cs4281_BA0", &entry)) { entry->content = SNDRV_INFO_CONTENT_DATA; entry->private_data = chip; entry->c.ops = &snd_cs4281_proc_ops_BA0; entry->size = CS4281_BA0_SIZE; } if (! snd_card_proc_new(chip->card, "cs4281_BA1", &entry)) { entry->content = SNDRV_INFO_CONTENT_DATA; entry->private_data = chip; entry->c.ops = &snd_cs4281_proc_ops_BA1; entry->size = CS4281_BA1_SIZE; } } /* * joystick support */ #if IS_REACHABLE(CONFIG_GAMEPORT) static void snd_cs4281_gameport_trigger(struct gameport *gameport) { struct cs4281 *chip = gameport_get_port_data(gameport); if (snd_BUG_ON(!chip)) return; snd_cs4281_pokeBA0(chip, BA0_JSPT, 0xff); } static unsigned char snd_cs4281_gameport_read(struct gameport *gameport) { struct cs4281 *chip = gameport_get_port_data(gameport); if (snd_BUG_ON(!chip)) return 0; return snd_cs4281_peekBA0(chip, BA0_JSPT); } #ifdef COOKED_MODE static int snd_cs4281_gameport_cooked_read(struct gameport *gameport, int *axes, int *buttons) { struct cs4281 *chip = gameport_get_port_data(gameport); unsigned js1, js2, jst; if (snd_BUG_ON(!chip)) return 0; js1 = snd_cs4281_peekBA0(chip, BA0_JSC1); js2 = snd_cs4281_peekBA0(chip, BA0_JSC2); jst = snd_cs4281_peekBA0(chip, BA0_JSPT); *buttons = (~jst >> 4) & 0x0F; axes[0] = ((js1 & JSC1_Y1V_MASK) >> JSC1_Y1V_SHIFT) & 0xFFFF; axes[1] = ((js1 & JSC1_X1V_MASK) >> JSC1_X1V_SHIFT) & 0xFFFF; axes[2] = ((js2 & JSC2_Y2V_MASK) >> JSC2_Y2V_SHIFT) & 0xFFFF; axes[3] = ((js2 & JSC2_X2V_MASK) >> JSC2_X2V_SHIFT) & 0xFFFF; for (jst = 0; jst < 4; ++jst) if (axes[jst] == 0xFFFF) axes[jst] = -1; return 0; } #else #define snd_cs4281_gameport_cooked_read NULL #endif static int snd_cs4281_gameport_open(struct gameport *gameport, int mode) { switch (mode) { #ifdef COOKED_MODE case GAMEPORT_MODE_COOKED: return 0; #endif case GAMEPORT_MODE_RAW: return 0; default: return -1; } return 0; } static int snd_cs4281_create_gameport(struct cs4281 *chip) { struct gameport *gp; chip->gameport = gp = gameport_allocate_port(); if (!gp) { dev_err(chip->card->dev, "cannot allocate memory for gameport\n"); return -ENOMEM; } gameport_set_name(gp, "CS4281 Gameport"); gameport_set_phys(gp, "pci%s/gameport0", pci_name(chip->pci)); gameport_set_dev_parent(gp, &chip->pci->dev); gp->open = snd_cs4281_gameport_open; gp->read = snd_cs4281_gameport_read; gp->trigger = snd_cs4281_gameport_trigger; gp->cooked_read = snd_cs4281_gameport_cooked_read; gameport_set_port_data(gp, chip); snd_cs4281_pokeBA0(chip, BA0_JSIO, 0xFF); // ? snd_cs4281_pokeBA0(chip, BA0_JSCTL, JSCTL_SP_MEDIUM_SLOW); gameport_register_port(gp); return 0; } static void snd_cs4281_free_gameport(struct cs4281 *chip) { if (chip->gameport) { gameport_unregister_port(chip->gameport); chip->gameport = NULL; } } #else static inline int snd_cs4281_create_gameport(struct cs4281 *chip) { return -ENOSYS; } static inline void snd_cs4281_free_gameport(struct cs4281 *chip) { } #endif /* CONFIG_GAMEPORT || (MODULE && CONFIG_GAMEPORT_MODULE) */ static int snd_cs4281_free(struct cs4281 *chip) { snd_cs4281_free_gameport(chip); if (chip->irq >= 0) synchronize_irq(chip->irq); /* Mask interrupts */ snd_cs4281_pokeBA0(chip, BA0_HIMR, 0x7fffffff); /* Stop the DLL Clock logic. */ snd_cs4281_pokeBA0(chip, BA0_CLKCR1, 0); /* Sound System Power Management - Turn Everything OFF */ snd_cs4281_pokeBA0(chip, BA0_SSPM, 0); /* PCI interface - D3 state */ pci_set_power_state(chip->pci, PCI_D3hot); if (chip->irq >= 0) free_irq(chip->irq, chip); iounmap(chip->ba0); iounmap(chip->ba1); pci_release_regions(chip->pci); pci_disable_device(chip->pci); kfree(chip); return 0; } static int snd_cs4281_dev_free(struct snd_device *device) { struct cs4281 *chip = device->device_data; return snd_cs4281_free(chip); } static int snd_cs4281_chip_init(struct cs4281 *chip); /* defined below */ static int snd_cs4281_create(struct snd_card *card, struct pci_dev *pci, struct cs4281 **rchip, int dual_codec) { struct cs4281 *chip; unsigned int tmp; int err; static struct snd_device_ops ops = { .dev_free = snd_cs4281_dev_free, }; *rchip = NULL; if ((err = pci_enable_device(pci)) < 0) return err; chip = kzalloc(sizeof(*chip), GFP_KERNEL); if (chip == NULL) { pci_disable_device(pci); return -ENOMEM; } spin_lock_init(&chip->reg_lock); chip->card = card; chip->pci = pci; chip->irq = -1; pci_set_master(pci); if (dual_codec < 0 || dual_codec > 3) { dev_err(card->dev, "invalid dual_codec option %d\n", dual_codec); dual_codec = 0; } chip->dual_codec = dual_codec; if ((err = pci_request_regions(pci, "CS4281")) < 0) { kfree(chip); pci_disable_device(pci); return err; } chip->ba0_addr = pci_resource_start(pci, 0); chip->ba1_addr = pci_resource_start(pci, 1); chip->ba0 = pci_ioremap_bar(pci, 0); chip->ba1 = pci_ioremap_bar(pci, 1); if (!chip->ba0 || !chip->ba1) { snd_cs4281_free(chip); return -ENOMEM; } if (request_irq(pci->irq, snd_cs4281_interrupt, IRQF_SHARED, KBUILD_MODNAME, chip)) { dev_err(card->dev, "unable to grab IRQ %d\n", pci->irq); snd_cs4281_free(chip); return -ENOMEM; } chip->irq = pci->irq; tmp = snd_cs4281_chip_init(chip); if (tmp) { snd_cs4281_free(chip); return tmp; } if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0) { snd_cs4281_free(chip); return err; } snd_cs4281_proc_init(chip); *rchip = chip; return 0; } static int snd_cs4281_chip_init(struct cs4281 *chip) { unsigned int tmp; unsigned long end_time; int retry_count = 2; /* Having EPPMC.FPDN=1 prevent proper chip initialisation */ tmp = snd_cs4281_peekBA0(chip, BA0_EPPMC); if (tmp & BA0_EPPMC_FPDN) snd_cs4281_pokeBA0(chip, BA0_EPPMC, tmp & ~BA0_EPPMC_FPDN); __retry: tmp = snd_cs4281_peekBA0(chip, BA0_CFLR); if (tmp != BA0_CFLR_DEFAULT) { snd_cs4281_pokeBA0(chip, BA0_CFLR, BA0_CFLR_DEFAULT); tmp = snd_cs4281_peekBA0(chip, BA0_CFLR); if (tmp != BA0_CFLR_DEFAULT) { dev_err(chip->card->dev, "CFLR setup failed (0x%x)\n", tmp); return -EIO; } } /* Set the 'Configuration Write Protect' register * to 4281h. Allows vendor-defined configuration * space between 0e4h and 0ffh to be written. */ snd_cs4281_pokeBA0(chip, BA0_CWPR, 0x4281); if ((tmp = snd_cs4281_peekBA0(chip, BA0_SERC1)) != (BA0_SERC1_SO1EN | BA0_SERC1_AC97)) { dev_err(chip->card->dev, "SERC1 AC'97 check failed (0x%x)\n", tmp); return -EIO; } if ((tmp = snd_cs4281_peekBA0(chip, BA0_SERC2)) != (BA0_SERC2_SI1EN | BA0_SERC2_AC97)) { dev_err(chip->card->dev, "SERC2 AC'97 check failed (0x%x)\n", tmp); return -EIO; } /* Sound System Power Management */ snd_cs4281_pokeBA0(chip, BA0_SSPM, BA0_SSPM_MIXEN | BA0_SSPM_CSRCEN | BA0_SSPM_PSRCEN | BA0_SSPM_JSEN | BA0_SSPM_ACLEN | BA0_SSPM_FMEN); /* Serial Port Power Management */ /* Blast the clock control register to zero so that the * PLL starts out in a known state, and blast the master serial * port control register to zero so that the serial ports also * start out in a known state. */ snd_cs4281_pokeBA0(chip, BA0_CLKCR1, 0); snd_cs4281_pokeBA0(chip, BA0_SERMC, 0); /* Make ESYN go to zero to turn off * the Sync pulse on the AC97 link. */ snd_cs4281_pokeBA0(chip, BA0_ACCTL, 0); udelay(50); /* Drive the ARST# pin low for a minimum of 1uS (as defined in the AC97 * spec) and then drive it high. This is done for non AC97 modes since * there might be logic external to the CS4281 that uses the ARST# line * for a reset. */ snd_cs4281_pokeBA0(chip, BA0_SPMC, 0); udelay(50); snd_cs4281_pokeBA0(chip, BA0_SPMC, BA0_SPMC_RSTN); msleep(50); if (chip->dual_codec) snd_cs4281_pokeBA0(chip, BA0_SPMC, BA0_SPMC_RSTN | BA0_SPMC_ASDI2E); /* * Set the serial port timing configuration. */ snd_cs4281_pokeBA0(chip, BA0_SERMC, (chip->dual_codec ? BA0_SERMC_TCID(chip->dual_codec) : BA0_SERMC_TCID(1)) | BA0_SERMC_PTC_AC97 | BA0_SERMC_MSPE); /* * Start the DLL Clock logic. */ snd_cs4281_pokeBA0(chip, BA0_CLKCR1, BA0_CLKCR1_DLLP); msleep(50); snd_cs4281_pokeBA0(chip, BA0_CLKCR1, BA0_CLKCR1_SWCE | BA0_CLKCR1_DLLP); /* * Wait for the DLL ready signal from the clock logic. */ end_time = jiffies + HZ; do { /* * Read the AC97 status register to see if we've seen a CODEC * signal from the AC97 codec. */ if (snd_cs4281_peekBA0(chip, BA0_CLKCR1) & BA0_CLKCR1_DLLRDY) goto __ok0; schedule_timeout_uninterruptible(1); } while (time_after_eq(end_time, jiffies)); dev_err(chip->card->dev, "DLLRDY not seen\n"); return -EIO; __ok0: /* * The first thing we do here is to enable sync generation. As soon * as we start receiving bit clock, we'll start producing the SYNC * signal. */ snd_cs4281_pokeBA0(chip, BA0_ACCTL, BA0_ACCTL_ESYN); /* * Wait for the codec ready signal from the AC97 codec. */ end_time = jiffies + HZ; do { /* * Read the AC97 status register to see if we've seen a CODEC * signal from the AC97 codec. */ if (snd_cs4281_peekBA0(chip, BA0_ACSTS) & BA0_ACSTS_CRDY) goto __ok1; schedule_timeout_uninterruptible(1); } while (time_after_eq(end_time, jiffies)); dev_err(chip->card->dev, "never read codec ready from AC'97 (0x%x)\n", snd_cs4281_peekBA0(chip, BA0_ACSTS)); return -EIO; __ok1: if (chip->dual_codec) { end_time = jiffies + HZ; do { if (snd_cs4281_peekBA0(chip, BA0_ACSTS2) & BA0_ACSTS_CRDY) goto __codec2_ok; schedule_timeout_uninterruptible(1); } while (time_after_eq(end_time, jiffies)); dev_info(chip->card->dev, "secondary codec doesn't respond. disable it...\n"); chip->dual_codec = 0; __codec2_ok: ; } /* * Assert the valid frame signal so that we can start sending commands * to the AC97 codec. */ snd_cs4281_pokeBA0(chip, BA0_ACCTL, BA0_ACCTL_VFRM | BA0_ACCTL_ESYN); /* * Wait until we've sampled input slots 3 and 4 as valid, meaning that * the codec is pumping ADC data across the AC-link. */ end_time = jiffies + HZ; do { /* * Read the input slot valid register and see if input slots 3 * 4 are valid yet. */ if ((snd_cs4281_peekBA0(chip, BA0_ACISV) & (BA0_ACISV_SLV(3) | BA0_ACISV_SLV(4))) == (BA0_ACISV_SLV(3) | BA0_ACISV_SLV(4))) goto __ok2; schedule_timeout_uninterruptible(1); } while (time_after_eq(end_time, jiffies)); if (--retry_count > 0) goto __retry; dev_err(chip->card->dev, "never read ISV3 and ISV4 from AC'97\n"); return -EIO; __ok2: /* * Now, assert valid frame and the slot 3 and 4 valid bits. This will * commense the transfer of digital audio data to the AC97 codec. */ snd_cs4281_pokeBA0(chip, BA0_ACOSV, BA0_ACOSV_SLV(3) | BA0_ACOSV_SLV(4)); /* * Initialize DMA structures */ for (tmp = 0; tmp < 4; tmp++) { struct cs4281_dma *dma = &chip->dma[tmp]; dma->regDBA = BA0_DBA0 + (tmp * 0x10); dma->regDCA = BA0_DCA0 + (tmp * 0x10); dma->regDBC = BA0_DBC0 + (tmp * 0x10); dma->regDCC = BA0_DCC0 + (tmp * 0x10); dma->regDMR = BA0_DMR0 + (tmp * 8); dma->regDCR = BA0_DCR0 + (tmp * 8); dma->regHDSR = BA0_HDSR0 + (tmp * 4); dma->regFCR = BA0_FCR0 + (tmp * 4); dma->regFSIC = BA0_FSIC0 + (tmp * 4); dma->fifo_offset = tmp * CS4281_FIFO_SIZE; snd_cs4281_pokeBA0(chip, dma->regFCR, BA0_FCR_LS(31) | BA0_FCR_RS(31) | BA0_FCR_SZ(CS4281_FIFO_SIZE) | BA0_FCR_OF(dma->fifo_offset)); } chip->src_left_play_slot = 0; /* AC'97 left PCM playback (3) */ chip->src_right_play_slot = 1; /* AC'97 right PCM playback (4) */ chip->src_left_rec_slot = 10; /* AC'97 left PCM record (3) */ chip->src_right_rec_slot = 11; /* AC'97 right PCM record (4) */ /* Activate wave playback FIFO for FM playback */ chip->dma[0].valFCR = BA0_FCR_FEN | BA0_FCR_LS(0) | BA0_FCR_RS(1) | BA0_FCR_SZ(CS4281_FIFO_SIZE) | BA0_FCR_OF(chip->dma[0].fifo_offset); snd_cs4281_pokeBA0(chip, chip->dma[0].regFCR, chip->dma[0].valFCR); snd_cs4281_pokeBA0(chip, BA0_SRCSA, (chip->src_left_play_slot << 0) | (chip->src_right_play_slot << 8) | (chip->src_left_rec_slot << 16) | (chip->src_right_rec_slot << 24)); /* Initialize digital volume */ snd_cs4281_pokeBA0(chip, BA0_PPLVC, 0); snd_cs4281_pokeBA0(chip, BA0_PPRVC, 0); /* Enable IRQs */ snd_cs4281_pokeBA0(chip, BA0_HICR, BA0_HICR_EOI); /* Unmask interrupts */ snd_cs4281_pokeBA0(chip, BA0_HIMR, 0x7fffffff & ~( BA0_HISR_MIDI | BA0_HISR_DMAI | BA0_HISR_DMA(0) | BA0_HISR_DMA(1) | BA0_HISR_DMA(2) | BA0_HISR_DMA(3))); synchronize_irq(chip->irq); return 0; } /* * MIDI section */ static void snd_cs4281_midi_reset(struct cs4281 *chip) { snd_cs4281_pokeBA0(chip, BA0_MIDCR, chip->midcr | BA0_MIDCR_MRST); udelay(100); snd_cs4281_pokeBA0(chip, BA0_MIDCR, chip->midcr); } static int snd_cs4281_midi_input_open(struct snd_rawmidi_substream *substream) { struct cs4281 *chip = substream->rmidi->private_data; spin_lock_irq(&chip->reg_lock); chip->midcr |= BA0_MIDCR_RXE; chip->midi_input = substream; if (!(chip->uartm & CS4281_MODE_OUTPUT)) { snd_cs4281_midi_reset(chip); } else { snd_cs4281_pokeBA0(chip, BA0_MIDCR, chip->midcr); } spin_unlock_irq(&chip->reg_lock); return 0; } static int snd_cs4281_midi_input_close(struct snd_rawmidi_substream *substream) { struct cs4281 *chip = substream->rmidi->private_data; spin_lock_irq(&chip->reg_lock); chip->midcr &= ~(BA0_MIDCR_RXE | BA0_MIDCR_RIE); chip->midi_input = NULL; if (!(chip->uartm & CS4281_MODE_OUTPUT)) { snd_cs4281_midi_reset(chip); } else { snd_cs4281_pokeBA0(chip, BA0_MIDCR, chip->midcr); } chip->uartm &= ~CS4281_MODE_INPUT; spin_unlock_irq(&chip->reg_lock); return 0; } static int snd_cs4281_midi_output_open(struct snd_rawmidi_substream *substream) { struct cs4281 *chip = substream->rmidi->private_data; spin_lock_irq(&chip->reg_lock); chip->uartm |= CS4281_MODE_OUTPUT; chip->midcr |= BA0_MIDCR_TXE; chip->midi_output = substream; if (!(chip->uartm & CS4281_MODE_INPUT)) { snd_cs4281_midi_reset(chip); } else { snd_cs4281_pokeBA0(chip, BA0_MIDCR, chip->midcr); } spin_unlock_irq(&chip->reg_lock); return 0; } static int snd_cs4281_midi_output_close(struct snd_rawmidi_substream *substream) { struct cs4281 *chip = substream->rmidi->private_data; spin_lock_irq(&chip->reg_lock); chip->midcr &= ~(BA0_MIDCR_TXE | BA0_MIDCR_TIE); chip->midi_output = NULL; if (!(chip->uartm & CS4281_MODE_INPUT)) { snd_cs4281_midi_reset(chip); } else { snd_cs4281_pokeBA0(chip, BA0_MIDCR, chip->midcr); } chip->uartm &= ~CS4281_MODE_OUTPUT; spin_unlock_irq(&chip->reg_lock); return 0; } static void snd_cs4281_midi_input_trigger(struct snd_rawmidi_substream *substream, int up) { unsigned long flags; struct cs4281 *chip = substream->rmidi->private_data; spin_lock_irqsave(&chip->reg_lock, flags); if (up) { if ((chip->midcr & BA0_MIDCR_RIE) == 0) { chip->midcr |= BA0_MIDCR_RIE; snd_cs4281_pokeBA0(chip, BA0_MIDCR, chip->midcr); } } else { if (chip->midcr & BA0_MIDCR_RIE) { chip->midcr &= ~BA0_MIDCR_RIE; snd_cs4281_pokeBA0(chip, BA0_MIDCR, chip->midcr); } } spin_unlock_irqrestore(&chip->reg_lock, flags); } static void snd_cs4281_midi_output_trigger(struct snd_rawmidi_substream *substream, int up) { unsigned long flags; struct cs4281 *chip = substream->rmidi->private_data; unsigned char byte; spin_lock_irqsave(&chip->reg_lock, flags); if (up) { if ((chip->midcr & BA0_MIDCR_TIE) == 0) { chip->midcr |= BA0_MIDCR_TIE; /* fill UART FIFO buffer at first, and turn Tx interrupts only if necessary */ while ((chip->midcr & BA0_MIDCR_TIE) && (snd_cs4281_peekBA0(chip, BA0_MIDSR) & BA0_MIDSR_TBF) == 0) { if (snd_rawmidi_transmit(substream, &byte, 1) != 1) { chip->midcr &= ~BA0_MIDCR_TIE; } else { snd_cs4281_pokeBA0(chip, BA0_MIDWP, byte); } } snd_cs4281_pokeBA0(chip, BA0_MIDCR, chip->midcr); } } else { if (chip->midcr & BA0_MIDCR_TIE) { chip->midcr &= ~BA0_MIDCR_TIE; snd_cs4281_pokeBA0(chip, BA0_MIDCR, chip->midcr); } } spin_unlock_irqrestore(&chip->reg_lock, flags); } static struct snd_rawmidi_ops snd_cs4281_midi_output = { .open = snd_cs4281_midi_output_open, .close = snd_cs4281_midi_output_close, .trigger = snd_cs4281_midi_output_trigger, }; static struct snd_rawmidi_ops snd_cs4281_midi_input = { .open = snd_cs4281_midi_input_open, .close = snd_cs4281_midi_input_close, .trigger = snd_cs4281_midi_input_trigger, }; static int snd_cs4281_midi(struct cs4281 *chip, int device) { struct snd_rawmidi *rmidi; int err; if ((err = snd_rawmidi_new(chip->card, "CS4281", device, 1, 1, &rmidi)) < 0) return err; strcpy(rmidi->name, "CS4281"); snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &snd_cs4281_midi_output); snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &snd_cs4281_midi_input); rmidi->info_flags |= SNDRV_RAWMIDI_INFO_OUTPUT | SNDRV_RAWMIDI_INFO_INPUT | SNDRV_RAWMIDI_INFO_DUPLEX; rmidi->private_data = chip; chip->rmidi = rmidi; return 0; } /* * Interrupt handler */ static irqreturn_t snd_cs4281_interrupt(int irq, void *dev_id) { struct cs4281 *chip = dev_id; unsigned int status, dma, val; struct cs4281_dma *cdma; if (chip == NULL) return IRQ_NONE; status = snd_cs4281_peekBA0(chip, BA0_HISR); if ((status & 0x7fffffff) == 0) { snd_cs4281_pokeBA0(chip, BA0_HICR, BA0_HICR_EOI); return IRQ_NONE; } if (status & (BA0_HISR_DMA(0)|BA0_HISR_DMA(1)|BA0_HISR_DMA(2)|BA0_HISR_DMA(3))) { for (dma = 0; dma < 4; dma++) if (status & BA0_HISR_DMA(dma)) { cdma = &chip->dma[dma]; spin_lock(&chip->reg_lock); /* ack DMA IRQ */ val = snd_cs4281_peekBA0(chip, cdma->regHDSR); /* workaround, sometimes CS4281 acknowledges */ /* end or middle transfer position twice */ cdma->frag++; if ((val & BA0_HDSR_DHTC) && !(cdma->frag & 1)) { cdma->frag--; chip->spurious_dhtc_irq++; spin_unlock(&chip->reg_lock); continue; } if ((val & BA0_HDSR_DTC) && (cdma->frag & 1)) { cdma->frag--; chip->spurious_dtc_irq++; spin_unlock(&chip->reg_lock); continue; } spin_unlock(&chip->reg_lock); snd_pcm_period_elapsed(cdma->substream); } } if ((status & BA0_HISR_MIDI) && chip->rmidi) { unsigned char c; spin_lock(&chip->reg_lock); while ((snd_cs4281_peekBA0(chip, BA0_MIDSR) & BA0_MIDSR_RBE) == 0) { c = snd_cs4281_peekBA0(chip, BA0_MIDRP); if ((chip->midcr & BA0_MIDCR_RIE) == 0) continue; snd_rawmidi_receive(chip->midi_input, &c, 1); } while ((snd_cs4281_peekBA0(chip, BA0_MIDSR) & BA0_MIDSR_TBF) == 0) { if ((chip->midcr & BA0_MIDCR_TIE) == 0) break; if (snd_rawmidi_transmit(chip->midi_output, &c, 1) != 1) { chip->midcr &= ~BA0_MIDCR_TIE; snd_cs4281_pokeBA0(chip, BA0_MIDCR, chip->midcr); break; } snd_cs4281_pokeBA0(chip, BA0_MIDWP, c); } spin_unlock(&chip->reg_lock); } /* EOI to the PCI part... reenables interrupts */ snd_cs4281_pokeBA0(chip, BA0_HICR, BA0_HICR_EOI); return IRQ_HANDLED; } /* * OPL3 command */ static void snd_cs4281_opl3_command(struct snd_opl3 *opl3, unsigned short cmd, unsigned char val) { unsigned long flags; struct cs4281 *chip = opl3->private_data; void __iomem *port; if (cmd & OPL3_RIGHT) port = chip->ba0 + BA0_B1AP; /* right port */ else port = chip->ba0 + BA0_B0AP; /* left port */ spin_lock_irqsave(&opl3->reg_lock, flags); writel((unsigned int)cmd, port); udelay(10); writel((unsigned int)val, port + 4); udelay(30); spin_unlock_irqrestore(&opl3->reg_lock, flags); } static int snd_cs4281_probe(struct pci_dev *pci, const struct pci_device_id *pci_id) { static int dev; struct snd_card *card; struct cs4281 *chip; struct snd_opl3 *opl3; int err; if (dev >= SNDRV_CARDS) return -ENODEV; if (!enable[dev]) { dev++; return -ENOENT; } err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE, 0, &card); if (err < 0) return err; if ((err = snd_cs4281_create(card, pci, &chip, dual_codec[dev])) < 0) { snd_card_free(card); return err; } card->private_data = chip; if ((err = snd_cs4281_mixer(chip)) < 0) { snd_card_free(card); return err; } if ((err = snd_cs4281_pcm(chip, 0)) < 0) { snd_card_free(card); return err; } if ((err = snd_cs4281_midi(chip, 0)) < 0) { snd_card_free(card); return err; } if ((err = snd_opl3_new(card, OPL3_HW_OPL3_CS4281, &opl3)) < 0) { snd_card_free(card); return err; } opl3->private_data = chip; opl3->command = snd_cs4281_opl3_command; snd_opl3_init(opl3); if ((err = snd_opl3_hwdep_new(opl3, 0, 1, NULL)) < 0) { snd_card_free(card); return err; } snd_cs4281_create_gameport(chip); strcpy(card->driver, "CS4281"); strcpy(card->shortname, "Cirrus Logic CS4281"); sprintf(card->longname, "%s at 0x%lx, irq %d", card->shortname, chip->ba0_addr, chip->irq); if ((err = snd_card_register(card)) < 0) { snd_card_free(card); return err; } pci_set_drvdata(pci, card); dev++; return 0; } static void snd_cs4281_remove(struct pci_dev *pci) { snd_card_free(pci_get_drvdata(pci)); } /* * Power Management */ #ifdef CONFIG_PM_SLEEP static int saved_regs[SUSPEND_REGISTERS] = { BA0_JSCTL, BA0_GPIOR, BA0_SSCR, BA0_MIDCR, BA0_SRCSA, BA0_PASR, BA0_CASR, BA0_DACSR, BA0_ADCSR, BA0_FMLVC, BA0_FMRVC, BA0_PPLVC, BA0_PPRVC, }; #define CLKCR1_CKRA 0x00010000L static int cs4281_suspend(struct device *dev) { struct snd_card *card = dev_get_drvdata(dev); struct cs4281 *chip = card->private_data; u32 ulCLK; unsigned int i; snd_power_change_state(card, SNDRV_CTL_POWER_D3hot); snd_pcm_suspend_all(chip->pcm); snd_ac97_suspend(chip->ac97); snd_ac97_suspend(chip->ac97_secondary); ulCLK = snd_cs4281_peekBA0(chip, BA0_CLKCR1); ulCLK |= CLKCR1_CKRA; snd_cs4281_pokeBA0(chip, BA0_CLKCR1, ulCLK); /* Disable interrupts. */ snd_cs4281_pokeBA0(chip, BA0_HICR, BA0_HICR_CHGM); /* remember the status registers */ for (i = 0; i < ARRAY_SIZE(saved_regs); i++) if (saved_regs[i]) chip->suspend_regs[i] = snd_cs4281_peekBA0(chip, saved_regs[i]); /* Turn off the serial ports. */ snd_cs4281_pokeBA0(chip, BA0_SERMC, 0); /* Power off FM, Joystick, AC link, */ snd_cs4281_pokeBA0(chip, BA0_SSPM, 0); /* DLL off. */ snd_cs4281_pokeBA0(chip, BA0_CLKCR1, 0); /* AC link off. */ snd_cs4281_pokeBA0(chip, BA0_SPMC, 0); ulCLK = snd_cs4281_peekBA0(chip, BA0_CLKCR1); ulCLK &= ~CLKCR1_CKRA; snd_cs4281_pokeBA0(chip, BA0_CLKCR1, ulCLK); return 0; } static int cs4281_resume(struct device *dev) { struct snd_card *card = dev_get_drvdata(dev); struct cs4281 *chip = card->private_data; unsigned int i; u32 ulCLK; ulCLK = snd_cs4281_peekBA0(chip, BA0_CLKCR1); ulCLK |= CLKCR1_CKRA; snd_cs4281_pokeBA0(chip, BA0_CLKCR1, ulCLK); snd_cs4281_chip_init(chip); /* restore the status registers */ for (i = 0; i < ARRAY_SIZE(saved_regs); i++) if (saved_regs[i]) snd_cs4281_pokeBA0(chip, saved_regs[i], chip->suspend_regs[i]); snd_ac97_resume(chip->ac97); snd_ac97_resume(chip->ac97_secondary); ulCLK = snd_cs4281_peekBA0(chip, BA0_CLKCR1); ulCLK &= ~CLKCR1_CKRA; snd_cs4281_pokeBA0(chip, BA0_CLKCR1, ulCLK); snd_power_change_state(card, SNDRV_CTL_POWER_D0); return 0; } static SIMPLE_DEV_PM_OPS(cs4281_pm, cs4281_suspend, cs4281_resume); #define CS4281_PM_OPS &cs4281_pm #else #define CS4281_PM_OPS NULL #endif /* CONFIG_PM_SLEEP */ static struct pci_driver cs4281_driver = { .name = KBUILD_MODNAME, .id_table = snd_cs4281_ids, .probe = snd_cs4281_probe, .remove = snd_cs4281_remove, .driver = { .pm = CS4281_PM_OPS, }, }; module_pci_driver(cs4281_driver);