/* * Copyright (C) 2015 Andrea Venturi * Andrea Venturi <be17068@iperbole.bo.it> * * Copyright (C) 2016 Maxime Ripard * Maxime Ripard <maxime.ripard@free-electrons.com> * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. */ #include <linux/clk.h> #include <linux/dmaengine.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/regmap.h> #include <sound/dmaengine_pcm.h> #include <sound/pcm_params.h> #include <sound/soc.h> #include <sound/soc-dai.h> #define SUN4I_I2S_CTRL_REG 0x00 #define SUN4I_I2S_CTRL_SDO_EN_MASK GENMASK(11, 8) #define SUN4I_I2S_CTRL_SDO_EN(sdo) BIT(8 + (sdo)) #define SUN4I_I2S_CTRL_MODE_MASK BIT(5) #define SUN4I_I2S_CTRL_MODE_SLAVE (1 << 5) #define SUN4I_I2S_CTRL_MODE_MASTER (0 << 5) #define SUN4I_I2S_CTRL_TX_EN BIT(2) #define SUN4I_I2S_CTRL_RX_EN BIT(1) #define SUN4I_I2S_CTRL_GL_EN BIT(0) #define SUN4I_I2S_FMT0_REG 0x04 #define SUN4I_I2S_FMT0_LRCLK_POLARITY_MASK BIT(7) #define SUN4I_I2S_FMT0_LRCLK_POLARITY_INVERTED (1 << 7) #define SUN4I_I2S_FMT0_LRCLK_POLARITY_NORMAL (0 << 7) #define SUN4I_I2S_FMT0_BCLK_POLARITY_MASK BIT(6) #define SUN4I_I2S_FMT0_BCLK_POLARITY_INVERTED (1 << 6) #define SUN4I_I2S_FMT0_BCLK_POLARITY_NORMAL (0 << 6) #define SUN4I_I2S_FMT0_SR_MASK GENMASK(5, 4) #define SUN4I_I2S_FMT0_SR(sr) ((sr) << 4) #define SUN4I_I2S_FMT0_WSS_MASK GENMASK(3, 2) #define SUN4I_I2S_FMT0_WSS(wss) ((wss) << 2) #define SUN4I_I2S_FMT0_FMT_MASK GENMASK(1, 0) #define SUN4I_I2S_FMT0_FMT_RIGHT_J (2 << 0) #define SUN4I_I2S_FMT0_FMT_LEFT_J (1 << 0) #define SUN4I_I2S_FMT0_FMT_I2S (0 << 0) #define SUN4I_I2S_FMT1_REG 0x08 #define SUN4I_I2S_FIFO_TX_REG 0x0c #define SUN4I_I2S_FIFO_RX_REG 0x10 #define SUN4I_I2S_FIFO_CTRL_REG 0x14 #define SUN4I_I2S_FIFO_CTRL_FLUSH_TX BIT(25) #define SUN4I_I2S_FIFO_CTRL_FLUSH_RX BIT(24) #define SUN4I_I2S_FIFO_CTRL_TX_MODE_MASK BIT(2) #define SUN4I_I2S_FIFO_CTRL_TX_MODE(mode) ((mode) << 2) #define SUN4I_I2S_FIFO_CTRL_RX_MODE_MASK GENMASK(1, 0) #define SUN4I_I2S_FIFO_CTRL_RX_MODE(mode) (mode) #define SUN4I_I2S_FIFO_STA_REG 0x18 #define SUN4I_I2S_DMA_INT_CTRL_REG 0x1c #define SUN4I_I2S_DMA_INT_CTRL_TX_DRQ_EN BIT(7) #define SUN4I_I2S_DMA_INT_CTRL_RX_DRQ_EN BIT(3) #define SUN4I_I2S_INT_STA_REG 0x20 #define SUN4I_I2S_CLK_DIV_REG 0x24 #define SUN4I_I2S_CLK_DIV_MCLK_EN BIT(7) #define SUN4I_I2S_CLK_DIV_BCLK_MASK GENMASK(6, 4) #define SUN4I_I2S_CLK_DIV_BCLK(bclk) ((bclk) << 4) #define SUN4I_I2S_CLK_DIV_MCLK_MASK GENMASK(3, 0) #define SUN4I_I2S_CLK_DIV_MCLK(mclk) ((mclk) << 0) #define SUN4I_I2S_RX_CNT_REG 0x28 #define SUN4I_I2S_TX_CNT_REG 0x2c #define SUN4I_I2S_TX_CHAN_SEL_REG 0x30 #define SUN4I_I2S_TX_CHAN_SEL(num_chan) (((num_chan) - 1) << 0) #define SUN4I_I2S_TX_CHAN_MAP_REG 0x34 #define SUN4I_I2S_TX_CHAN_MAP(chan, sample) ((sample) << (chan << 2)) #define SUN4I_I2S_RX_CHAN_SEL_REG 0x38 #define SUN4I_I2S_RX_CHAN_MAP_REG 0x3c struct sun4i_i2s { struct clk *bus_clk; struct clk *mod_clk; struct regmap *regmap; unsigned int mclk_freq; struct snd_dmaengine_dai_dma_data capture_dma_data; struct snd_dmaengine_dai_dma_data playback_dma_data; }; struct sun4i_i2s_clk_div { u8 div; u8 val; }; static const struct sun4i_i2s_clk_div sun4i_i2s_bclk_div[] = { { .div = 2, .val = 0 }, { .div = 4, .val = 1 }, { .div = 6, .val = 2 }, { .div = 8, .val = 3 }, { .div = 12, .val = 4 }, { .div = 16, .val = 5 }, }; static const struct sun4i_i2s_clk_div sun4i_i2s_mclk_div[] = { { .div = 1, .val = 0 }, { .div = 2, .val = 1 }, { .div = 4, .val = 2 }, { .div = 6, .val = 3 }, { .div = 8, .val = 4 }, { .div = 12, .val = 5 }, { .div = 16, .val = 6 }, { .div = 24, .val = 7 }, }; static int sun4i_i2s_get_bclk_div(struct sun4i_i2s *i2s, unsigned int oversample_rate, unsigned int word_size) { int div = oversample_rate / word_size / 2; int i; for (i = 0; i < ARRAY_SIZE(sun4i_i2s_bclk_div); i++) { const struct sun4i_i2s_clk_div *bdiv = &sun4i_i2s_bclk_div[i]; if (bdiv->div == div) return bdiv->val; } return -EINVAL; } static int sun4i_i2s_get_mclk_div(struct sun4i_i2s *i2s, unsigned int oversample_rate, unsigned int module_rate, unsigned int sampling_rate) { int div = module_rate / sampling_rate / oversample_rate; int i; for (i = 0; i < ARRAY_SIZE(sun4i_i2s_mclk_div); i++) { const struct sun4i_i2s_clk_div *mdiv = &sun4i_i2s_mclk_div[i]; if (mdiv->div == div) return mdiv->val; } return -EINVAL; } static int sun4i_i2s_oversample_rates[] = { 128, 192, 256, 384, 512, 768 }; static bool sun4i_i2s_oversample_is_valid(unsigned int oversample) { int i; for (i = 0; i < ARRAY_SIZE(sun4i_i2s_oversample_rates); i++) if (sun4i_i2s_oversample_rates[i] == oversample) return true; return false; } static int sun4i_i2s_set_clk_rate(struct sun4i_i2s *i2s, unsigned int rate, unsigned int word_size) { unsigned int oversample_rate, clk_rate; int bclk_div, mclk_div; int ret; switch (rate) { case 176400: case 88200: case 44100: case 22050: case 11025: clk_rate = 22579200; break; case 192000: case 128000: case 96000: case 64000: case 48000: case 32000: case 24000: case 16000: case 12000: case 8000: clk_rate = 24576000; break; default: return -EINVAL; } ret = clk_set_rate(i2s->mod_clk, clk_rate); if (ret) return ret; oversample_rate = i2s->mclk_freq / rate; if (!sun4i_i2s_oversample_is_valid(oversample_rate)) return -EINVAL; bclk_div = sun4i_i2s_get_bclk_div(i2s, oversample_rate, word_size); if (bclk_div < 0) return -EINVAL; mclk_div = sun4i_i2s_get_mclk_div(i2s, oversample_rate, clk_rate, rate); if (mclk_div < 0) return -EINVAL; regmap_write(i2s->regmap, SUN4I_I2S_CLK_DIV_REG, SUN4I_I2S_CLK_DIV_BCLK(bclk_div) | SUN4I_I2S_CLK_DIV_MCLK(mclk_div) | SUN4I_I2S_CLK_DIV_MCLK_EN); return 0; } static int sun4i_i2s_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct sun4i_i2s *i2s = snd_soc_dai_get_drvdata(dai); int sr, wss; u32 width; if (params_channels(params) != 2) return -EINVAL; switch (params_physical_width(params)) { case 16: width = DMA_SLAVE_BUSWIDTH_2_BYTES; break; default: return -EINVAL; } i2s->playback_dma_data.addr_width = width; switch (params_width(params)) { case 16: sr = 0; wss = 0; break; default: return -EINVAL; } regmap_update_bits(i2s->regmap, SUN4I_I2S_FMT0_REG, SUN4I_I2S_FMT0_WSS_MASK | SUN4I_I2S_FMT0_SR_MASK, SUN4I_I2S_FMT0_WSS(wss) | SUN4I_I2S_FMT0_SR(sr)); return sun4i_i2s_set_clk_rate(i2s, params_rate(params), params_width(params)); } static int sun4i_i2s_set_fmt(struct snd_soc_dai *dai, unsigned int fmt) { struct sun4i_i2s *i2s = snd_soc_dai_get_drvdata(dai); u32 val; /* DAI Mode */ switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { case SND_SOC_DAIFMT_I2S: val = SUN4I_I2S_FMT0_FMT_I2S; break; case SND_SOC_DAIFMT_LEFT_J: val = SUN4I_I2S_FMT0_FMT_LEFT_J; break; case SND_SOC_DAIFMT_RIGHT_J: val = SUN4I_I2S_FMT0_FMT_RIGHT_J; break; default: return -EINVAL; } regmap_update_bits(i2s->regmap, SUN4I_I2S_FMT0_REG, SUN4I_I2S_FMT0_FMT_MASK, val); /* DAI clock polarity */ switch (fmt & SND_SOC_DAIFMT_INV_MASK) { case SND_SOC_DAIFMT_IB_IF: /* Invert both clocks */ val = SUN4I_I2S_FMT0_BCLK_POLARITY_INVERTED | SUN4I_I2S_FMT0_LRCLK_POLARITY_INVERTED; break; case SND_SOC_DAIFMT_IB_NF: /* Invert bit clock */ val = SUN4I_I2S_FMT0_BCLK_POLARITY_INVERTED | SUN4I_I2S_FMT0_LRCLK_POLARITY_NORMAL; break; case SND_SOC_DAIFMT_NB_IF: /* Invert frame clock */ val = SUN4I_I2S_FMT0_LRCLK_POLARITY_INVERTED | SUN4I_I2S_FMT0_BCLK_POLARITY_NORMAL; break; case SND_SOC_DAIFMT_NB_NF: /* Nothing to do for both normal cases */ val = SUN4I_I2S_FMT0_BCLK_POLARITY_NORMAL | SUN4I_I2S_FMT0_LRCLK_POLARITY_NORMAL; break; default: return -EINVAL; } regmap_update_bits(i2s->regmap, SUN4I_I2S_FMT0_REG, SUN4I_I2S_FMT0_BCLK_POLARITY_MASK | SUN4I_I2S_FMT0_LRCLK_POLARITY_MASK, val); /* DAI clock master masks */ switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) { case SND_SOC_DAIFMT_CBS_CFS: /* BCLK and LRCLK master */ val = SUN4I_I2S_CTRL_MODE_MASTER; break; case SND_SOC_DAIFMT_CBM_CFM: /* BCLK and LRCLK slave */ val = SUN4I_I2S_CTRL_MODE_SLAVE; break; default: return -EINVAL; } regmap_update_bits(i2s->regmap, SUN4I_I2S_CTRL_REG, SUN4I_I2S_CTRL_MODE_MASK, val); /* Set significant bits in our FIFOs */ regmap_update_bits(i2s->regmap, SUN4I_I2S_FIFO_CTRL_REG, SUN4I_I2S_FIFO_CTRL_TX_MODE_MASK | SUN4I_I2S_FIFO_CTRL_RX_MODE_MASK, SUN4I_I2S_FIFO_CTRL_TX_MODE(1) | SUN4I_I2S_FIFO_CTRL_RX_MODE(1)); return 0; } static void sun4i_i2s_start_capture(struct sun4i_i2s *i2s) { /* Flush RX FIFO */ regmap_update_bits(i2s->regmap, SUN4I_I2S_FIFO_CTRL_REG, SUN4I_I2S_FIFO_CTRL_FLUSH_RX, SUN4I_I2S_FIFO_CTRL_FLUSH_RX); /* Clear RX counter */ regmap_write(i2s->regmap, SUN4I_I2S_RX_CNT_REG, 0); /* Enable RX Block */ regmap_update_bits(i2s->regmap, SUN4I_I2S_CTRL_REG, SUN4I_I2S_CTRL_RX_EN, SUN4I_I2S_CTRL_RX_EN); /* Enable RX DRQ */ regmap_update_bits(i2s->regmap, SUN4I_I2S_DMA_INT_CTRL_REG, SUN4I_I2S_DMA_INT_CTRL_RX_DRQ_EN, SUN4I_I2S_DMA_INT_CTRL_RX_DRQ_EN); } static void sun4i_i2s_start_playback(struct sun4i_i2s *i2s) { /* Flush TX FIFO */ regmap_update_bits(i2s->regmap, SUN4I_I2S_FIFO_CTRL_REG, SUN4I_I2S_FIFO_CTRL_FLUSH_TX, SUN4I_I2S_FIFO_CTRL_FLUSH_TX); /* Clear TX counter */ regmap_write(i2s->regmap, SUN4I_I2S_TX_CNT_REG, 0); /* Enable TX Block */ regmap_update_bits(i2s->regmap, SUN4I_I2S_CTRL_REG, SUN4I_I2S_CTRL_TX_EN, SUN4I_I2S_CTRL_TX_EN); /* Enable TX DRQ */ regmap_update_bits(i2s->regmap, SUN4I_I2S_DMA_INT_CTRL_REG, SUN4I_I2S_DMA_INT_CTRL_TX_DRQ_EN, SUN4I_I2S_DMA_INT_CTRL_TX_DRQ_EN); } static void sun4i_i2s_stop_capture(struct sun4i_i2s *i2s) { /* Disable RX Block */ regmap_update_bits(i2s->regmap, SUN4I_I2S_CTRL_REG, SUN4I_I2S_CTRL_RX_EN, 0); /* Disable RX DRQ */ regmap_update_bits(i2s->regmap, SUN4I_I2S_DMA_INT_CTRL_REG, SUN4I_I2S_DMA_INT_CTRL_RX_DRQ_EN, 0); } static void sun4i_i2s_stop_playback(struct sun4i_i2s *i2s) { /* Disable TX Block */ regmap_update_bits(i2s->regmap, SUN4I_I2S_CTRL_REG, SUN4I_I2S_CTRL_TX_EN, 0); /* Disable TX DRQ */ regmap_update_bits(i2s->regmap, SUN4I_I2S_DMA_INT_CTRL_REG, SUN4I_I2S_DMA_INT_CTRL_TX_DRQ_EN, 0); } static int sun4i_i2s_trigger(struct snd_pcm_substream *substream, int cmd, struct snd_soc_dai *dai) { struct sun4i_i2s *i2s = snd_soc_dai_get_drvdata(dai); switch (cmd) { case SNDRV_PCM_TRIGGER_START: case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: case SNDRV_PCM_TRIGGER_RESUME: if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) sun4i_i2s_start_playback(i2s); else sun4i_i2s_start_capture(i2s); break; case SNDRV_PCM_TRIGGER_STOP: case SNDRV_PCM_TRIGGER_PAUSE_PUSH: case SNDRV_PCM_TRIGGER_SUSPEND: if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) sun4i_i2s_stop_playback(i2s); else sun4i_i2s_stop_capture(i2s); break; default: return -EINVAL; } return 0; } static int sun4i_i2s_startup(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct sun4i_i2s *i2s = snd_soc_dai_get_drvdata(dai); /* Enable the whole hardware block */ regmap_write(i2s->regmap, SUN4I_I2S_CTRL_REG, SUN4I_I2S_CTRL_GL_EN); /* Enable the first output line */ regmap_update_bits(i2s->regmap, SUN4I_I2S_CTRL_REG, SUN4I_I2S_CTRL_SDO_EN_MASK, SUN4I_I2S_CTRL_SDO_EN(0)); /* Enable the first two channels */ regmap_write(i2s->regmap, SUN4I_I2S_TX_CHAN_SEL_REG, SUN4I_I2S_TX_CHAN_SEL(2)); /* Map them to the two first samples coming in */ regmap_write(i2s->regmap, SUN4I_I2S_TX_CHAN_MAP_REG, SUN4I_I2S_TX_CHAN_MAP(0, 0) | SUN4I_I2S_TX_CHAN_MAP(1, 1)); return clk_prepare_enable(i2s->mod_clk); } static void sun4i_i2s_shutdown(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct sun4i_i2s *i2s = snd_soc_dai_get_drvdata(dai); clk_disable_unprepare(i2s->mod_clk); /* Disable our output lines */ regmap_update_bits(i2s->regmap, SUN4I_I2S_CTRL_REG, SUN4I_I2S_CTRL_SDO_EN_MASK, 0); /* Disable the whole hardware block */ regmap_write(i2s->regmap, SUN4I_I2S_CTRL_REG, 0); } static int sun4i_i2s_set_sysclk(struct snd_soc_dai *dai, int clk_id, unsigned int freq, int dir) { struct sun4i_i2s *i2s = snd_soc_dai_get_drvdata(dai); if (clk_id != 0) return -EINVAL; i2s->mclk_freq = freq; return 0; } static const struct snd_soc_dai_ops sun4i_i2s_dai_ops = { .hw_params = sun4i_i2s_hw_params, .set_fmt = sun4i_i2s_set_fmt, .set_sysclk = sun4i_i2s_set_sysclk, .shutdown = sun4i_i2s_shutdown, .startup = sun4i_i2s_startup, .trigger = sun4i_i2s_trigger, }; static int sun4i_i2s_dai_probe(struct snd_soc_dai *dai) { struct sun4i_i2s *i2s = snd_soc_dai_get_drvdata(dai); snd_soc_dai_init_dma_data(dai, &i2s->playback_dma_data, &i2s->capture_dma_data); snd_soc_dai_set_drvdata(dai, i2s); return 0; } static struct snd_soc_dai_driver sun4i_i2s_dai = { .probe = sun4i_i2s_dai_probe, .capture = { .stream_name = "Capture", .channels_min = 2, .channels_max = 2, .rates = SNDRV_PCM_RATE_8000_192000, .formats = SNDRV_PCM_FMTBIT_S16_LE, }, .playback = { .stream_name = "Playback", .channels_min = 2, .channels_max = 2, .rates = SNDRV_PCM_RATE_8000_192000, .formats = SNDRV_PCM_FMTBIT_S16_LE, }, .ops = &sun4i_i2s_dai_ops, .symmetric_rates = 1, }; static const struct snd_soc_component_driver sun4i_i2s_component = { .name = "sun4i-dai", }; static bool sun4i_i2s_rd_reg(struct device *dev, unsigned int reg) { switch (reg) { case SUN4I_I2S_FIFO_TX_REG: return false; default: return true; } } static bool sun4i_i2s_wr_reg(struct device *dev, unsigned int reg) { switch (reg) { case SUN4I_I2S_FIFO_RX_REG: case SUN4I_I2S_FIFO_STA_REG: return false; default: return true; } } static bool sun4i_i2s_volatile_reg(struct device *dev, unsigned int reg) { switch (reg) { case SUN4I_I2S_FIFO_RX_REG: case SUN4I_I2S_INT_STA_REG: case SUN4I_I2S_RX_CNT_REG: case SUN4I_I2S_TX_CNT_REG: return true; default: return false; } } static const struct reg_default sun4i_i2s_reg_defaults[] = { { SUN4I_I2S_CTRL_REG, 0x00000000 }, { SUN4I_I2S_FMT0_REG, 0x0000000c }, { SUN4I_I2S_FMT1_REG, 0x00004020 }, { SUN4I_I2S_FIFO_CTRL_REG, 0x000400f0 }, { SUN4I_I2S_DMA_INT_CTRL_REG, 0x00000000 }, { SUN4I_I2S_CLK_DIV_REG, 0x00000000 }, { SUN4I_I2S_TX_CHAN_SEL_REG, 0x00000001 }, { SUN4I_I2S_TX_CHAN_MAP_REG, 0x76543210 }, { SUN4I_I2S_RX_CHAN_SEL_REG, 0x00000001 }, { SUN4I_I2S_RX_CHAN_MAP_REG, 0x00003210 }, }; static const struct regmap_config sun4i_i2s_regmap_config = { .reg_bits = 32, .reg_stride = 4, .val_bits = 32, .max_register = SUN4I_I2S_RX_CHAN_MAP_REG, .cache_type = REGCACHE_FLAT, .reg_defaults = sun4i_i2s_reg_defaults, .num_reg_defaults = ARRAY_SIZE(sun4i_i2s_reg_defaults), .writeable_reg = sun4i_i2s_wr_reg, .readable_reg = sun4i_i2s_rd_reg, .volatile_reg = sun4i_i2s_volatile_reg, }; static int sun4i_i2s_runtime_resume(struct device *dev) { struct sun4i_i2s *i2s = dev_get_drvdata(dev); int ret; ret = clk_prepare_enable(i2s->bus_clk); if (ret) { dev_err(dev, "Failed to enable bus clock\n"); return ret; } regcache_cache_only(i2s->regmap, false); regcache_mark_dirty(i2s->regmap); ret = regcache_sync(i2s->regmap); if (ret) { dev_err(dev, "Failed to sync regmap cache\n"); goto err_disable_clk; } return 0; err_disable_clk: clk_disable_unprepare(i2s->bus_clk); return ret; } static int sun4i_i2s_runtime_suspend(struct device *dev) { struct sun4i_i2s *i2s = dev_get_drvdata(dev); regcache_cache_only(i2s->regmap, true); clk_disable_unprepare(i2s->bus_clk); return 0; } static int sun4i_i2s_probe(struct platform_device *pdev) { struct sun4i_i2s *i2s; struct resource *res; void __iomem *regs; int irq, ret; i2s = devm_kzalloc(&pdev->dev, sizeof(*i2s), GFP_KERNEL); if (!i2s) return -ENOMEM; platform_set_drvdata(pdev, i2s); res = platform_get_resource(pdev, IORESOURCE_MEM, 0); regs = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(regs)) return PTR_ERR(regs); irq = platform_get_irq(pdev, 0); if (irq < 0) { dev_err(&pdev->dev, "Can't retrieve our interrupt\n"); return irq; } i2s->bus_clk = devm_clk_get(&pdev->dev, "apb"); if (IS_ERR(i2s->bus_clk)) { dev_err(&pdev->dev, "Can't get our bus clock\n"); return PTR_ERR(i2s->bus_clk); } i2s->regmap = devm_regmap_init_mmio(&pdev->dev, regs, &sun4i_i2s_regmap_config); if (IS_ERR(i2s->regmap)) { dev_err(&pdev->dev, "Regmap initialisation failed\n"); return PTR_ERR(i2s->regmap); } i2s->mod_clk = devm_clk_get(&pdev->dev, "mod"); if (IS_ERR(i2s->mod_clk)) { dev_err(&pdev->dev, "Can't get our mod clock\n"); return PTR_ERR(i2s->mod_clk); } i2s->playback_dma_data.addr = res->start + SUN4I_I2S_FIFO_TX_REG; i2s->playback_dma_data.maxburst = 4; i2s->capture_dma_data.addr = res->start + SUN4I_I2S_FIFO_RX_REG; i2s->capture_dma_data.maxburst = 4; pm_runtime_enable(&pdev->dev); if (!pm_runtime_enabled(&pdev->dev)) { ret = sun4i_i2s_runtime_resume(&pdev->dev); if (ret) goto err_pm_disable; } ret = devm_snd_soc_register_component(&pdev->dev, &sun4i_i2s_component, &sun4i_i2s_dai, 1); if (ret) { dev_err(&pdev->dev, "Could not register DAI\n"); goto err_suspend; } ret = snd_dmaengine_pcm_register(&pdev->dev, NULL, 0); if (ret) { dev_err(&pdev->dev, "Could not register PCM\n"); goto err_suspend; } return 0; err_suspend: if (!pm_runtime_status_suspended(&pdev->dev)) sun4i_i2s_runtime_suspend(&pdev->dev); err_pm_disable: pm_runtime_disable(&pdev->dev); return ret; } static int sun4i_i2s_remove(struct platform_device *pdev) { snd_dmaengine_pcm_unregister(&pdev->dev); pm_runtime_disable(&pdev->dev); if (!pm_runtime_status_suspended(&pdev->dev)) sun4i_i2s_runtime_suspend(&pdev->dev); return 0; } static const struct of_device_id sun4i_i2s_match[] = { { .compatible = "allwinner,sun4i-a10-i2s", }, {} }; MODULE_DEVICE_TABLE(of, sun4i_i2s_match); static const struct dev_pm_ops sun4i_i2s_pm_ops = { .runtime_resume = sun4i_i2s_runtime_resume, .runtime_suspend = sun4i_i2s_runtime_suspend, }; static struct platform_driver sun4i_i2s_driver = { .probe = sun4i_i2s_probe, .remove = sun4i_i2s_remove, .driver = { .name = "sun4i-i2s", .of_match_table = sun4i_i2s_match, .pm = &sun4i_i2s_pm_ops, }, }; module_platform_driver(sun4i_i2s_driver); MODULE_AUTHOR("Andrea Venturi <be17068@iperbole.bo.it>"); MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>"); MODULE_DESCRIPTION("Allwinner A10 I2S driver"); MODULE_LICENSE("GPL");