#ifndef __USBAUDIO_PROC_H #define __USBAUDIO_PROC_H void snd_usb_audio_create_proc(struct snd_usb_audio *chip); void snd_usb_proc_pcm_format_add(struct snd_usb_stream *stream); #endif /* __USBAUDIO_PROC_H */ e='Atom feed' href='https://git.distanz.ch/cgit.cgi/linux/net-next.git/atom/tools/perf/tests/attr/test-stat-no-inherit?h=master' type='application/atom+xml'/>
summaryrefslogtreecommitdiff
path: root/tools/perf/tests/attr/test-stat-no-inherit
AgeCommit message (Expand)AuthorFilesLines
space:
mode:
authorBorislav Petkov <bp@suse.de>2017-01-20 21:29:40 +0100
committerThomas Gleixner <tglx@linutronix.de>2017-01-23 09:39:55 +0100
commitc26665ab5c49ad3e142e0f054ca3204f259ba09c (patch)
tree3bab11918e18e9d25ef7544dba05cdf39d1abec5 /include/dt-bindings/clock
parent7a308bb3016f57e5be11a677d15b821536419d36 (diff)
x86/microcode/intel: Drop stashed AP patch pointer optimization
This was meant to save us the scanning of the microcode containter in the initrd since the first AP had already done that but it can also hurt us: Imagine a single hyperthreaded CPU (Intel(R) Atom(TM) CPU N270, for example) which updates the microcode on the BSP but since the microcode engine is shared between the two threads, the update on CPU1 doesn't happen because it has already happened on CPU0 and we don't find a newer microcode revision on CPU1. Which doesn't set the intel_ucode_patch pointer and at initrd jettisoning time we don't save the microcode patch for later application. Now, when we suspend to RAM, the loaded microcode gets cleared so we need to reload but there's no patch saved in the cache. Removing the optimization fixes this issue and all is fine and dandy. Fixes: 06b8534cb728 ("x86/microcode: Rework microcode loading") Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20170120202955.4091-2-bp@alien8.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Diffstat (limited to 'include/dt-bindings/clock')