/* * Copyright (C) 2013 Davidlohr Bueso * * futex-requeue: Block a bunch of threads on futex1 and requeue them * on futex2, N at a time. * * This program is particularly useful to measure the latency of nthread * requeues without waking up any tasks -- thus mimicking a regular futex_wait. */ /* For the CLR_() macros */ #include #include #include "../util/stat.h" #include #include #include #include #include #include "bench.h" #include "futex.h" #include #include #include static u_int32_t futex1 = 0, futex2 = 0; /* * How many tasks to requeue at a time. * Default to 1 in order to make the kernel work more. */ static unsigned int nrequeue = 1; static pthread_t *worker; static bool done = false, silent = false, fshared = false; static pthread_mutex_t thread_lock; static pthread_cond_t thread_parent, thread_worker; static struct stats requeuetime_stats, requeued_stats; static unsigned int ncpus, threads_starting, nthreads = 0; static int futex_flag = 0; static const struct option options[] = { OPT_UINTEGER('t', "threads", &nthreads, "Specify amount of threads"), OPT_UINTEGER('q', "nrequeue", &nrequeue, "Specify amount of threads to requeue at once"), OPT_BOOLEAN( 's', "silent", &silent, "Silent mode: do not display data/details"), OPT_BOOLEAN( 'S', "shared", &fshared, "Use shared futexes instead of private ones"), OPT_END() }; static const char * const bench_futex_requeue_usage[] = { "perf bench futex requeue ", NULL }; static void print_summary(void) { double requeuetime_avg = avg_stats(&requeuetime_stats); double requeuetime_stddev = stddev_stats(&requeuetime_stats); unsigned int requeued_avg = avg_stats(&requeued_stats); printf("Requeued %d of %d threads in %.4f ms (+-%.2f%%)\n", requeued_avg, nthreads, requeuetime_avg / USEC_PER_MSEC, rel_stddev_stats(requeuetime_stddev, requeuetime_avg)); } static void *workerfn(void *arg __maybe_unused) { pthread_mutex_lock(&thread_lock); threads_starting--; if (!threads_starting) pthread_cond_signal(&thread_parent); pthread_cond_wait(&thread_worker, &thread_lock); pthread_mutex_unlock(&thread_lock); futex_wait(&futex1, 0, NULL, futex_flag); return NULL; } static void block_threads(pthread_t *w, pthread_attr_t thread_attr) { cpu_set_t cpu; unsigned int i; threads_starting = nthreads; /* create and block all threads */ for (i = 0; i < nthreads; i++) { CPU_ZERO(&cpu); CPU_SET(i % ncpus, &cpu); if (pthread_attr_setaffinity_np(&thread_attr, sizeof(cpu_set_t), &cpu)) err(EXIT_FAILURE, "pthread_attr_setaffinity_np"); if (pthread_create(&w[i], &thread_attr, workerfn, NULL)) err(EXIT_FAILURE, "pthread_create"); } } static void toggle_done(int sig __maybe_unused, siginfo_t *info __maybe_unused, void *uc __maybe_unused) { done = true; } int bench_futex_requeue(int argc, const char **argv, const char *prefix __maybe_unused) { int ret = 0; unsigned int i, j; struct sigaction act; pthread_attr_t thread_attr; argc = parse_options(argc, argv, options, bench_futex_requeue_usage, 0); if (argc) goto err; ncpus = sysconf(_SC_NPROCESSORS_ONLN); sigfillset(&act.sa_mask); act.sa_sigaction = toggle_done; sigaction(SIGINT, &act, NULL); if (!nthreads) nthreads = ncpus; else nthreads = futexbench_sanitize_numeric(nthreads); worker = calloc(nthreads, sizeof(*worker)); if (!worker) err(EXIT_FAILURE, "calloc"); if (!fshared) futex_flag = FUTEX_PRIVATE_FLAG; if (nrequeue > nthreads) nrequeue = nthreads; printf("Run summary [PID %d]: Requeuing %d threads (from [%s] %p to %p), " "%d at a time.\n\n", getpid(), nthreads, fshared ? "shared":"private", &futex1, &futex2, nrequeue); init_stats(&requeued_stats); init_stats(&requeuetime_stats); pthread_attr_init(&thread_attr); pthread_mutex_init(&thread_lock, NULL); pthread_cond_init(&thread_parent, NULL); pthread_cond_init(&thread_worker, NULL); for (j = 0; j < bench_repeat && !done; j++) { unsigned int nrequeued = 0; struct timeval start, end, runtime; /* create, launch & block all threads */ block_threads(worker, thread_attr); /* make sure all threads are already blocked */ pthread_mutex_lock(&thread_lock); while (threads_starting) pthread_cond_wait(&thread_parent, &thread_lock); pthread_cond_broadcast(&thread_worker); pthread_mutex_unlock(&thread_lock); usleep(100000); /* Ok, all threads are patiently blocked, start requeueing */ gettimeofday(&start, NULL); while (nrequeued < nthreads) { /* * Do not wakeup any tasks blocked on futex1, allowing * us to really measure futex_wait functionality. */ nrequeued += futex_cmp_requeue(&futex1, 0, &futex2, 0, nrequeue, futex_flag); } gettimeofday(&end, NULL); timersub(&end, &start, &runtime); update_stats(&requeued_stats, nrequeued); update_stats(&requeuetime_stats, runtime.tv_usec); if (!silent) { printf("[Run %d]: Requeued %d of %d threads in %.4f ms\n", j + 1, nrequeued, nthreads, runtime.tv_usec / (double)USEC_PER_MSEC); } /* everybody should be blocked on futex2, wake'em up */ nrequeued = futex_wake(&futex2, nrequeued, futex_flag); if (nthreads != nrequeued) warnx("couldn't wakeup all tasks (%d/%d)", nrequeued, nthreads); for (i = 0; i < nthreads; i++) { ret = pthread_join(worker[i], NULL); if (ret) err(EXIT_FAILURE, "pthread_join"); } } /* cleanup & report results */ pthread_cond_destroy(&thread_parent); pthread_cond_destroy(&thread_worker); pthread_mutex_destroy(&thread_lock); pthread_attr_destroy(&thread_attr); print_summary(); free(worker); return ret; err: usage_with_options(bench_futex_requeue_usage, options); exit(EXIT_FAILURE); } e hwlat tracer creates a kernel thread at start of the tracer. It is pinned to a single CPU and will move to the next CPU after each period of running. If the user modifies the migration thread's affinity, it will not change after that happens. The original code created the thread at the first instance it was called, but later was changed to destroy the thread after the tracer was finished, and would not be created until the next instance of the tracer was established. The code that initialized the affinity was only called on the initial instantiation of the tracer. After that, it was not initialized, and the previous affinity did not match the current newly created one, making it appear that the user modified the thread's affinity when it did not, and the thread failed to migrate again. Cc: stable@vger.kernel.org Fixes: 0330f7aa8ee6 ("tracing: Have hwlat trace migrate across tracing_cpumask CPUs") Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Diffstat (limited to 'net/ipv4/xfrm4_tunnel.c')