#include #include #include #include #include #include #include #include #include #include #include int nr_allocated; int preempt_count; struct kmem_cache { pthread_mutex_t lock; int size; int nr_objs; void *objs; void (*ctor)(void *); }; void *mempool_alloc(mempool_t *pool, int gfp_mask) { return pool->alloc(gfp_mask, pool->data); } void mempool_free(void *element, mempool_t *pool) { pool->free(element, pool->data); } mempool_t *mempool_create(int min_nr, mempool_alloc_t *alloc_fn, mempool_free_t *free_fn, void *pool_data) { mempool_t *ret = malloc(sizeof(*ret)); ret->alloc = alloc_fn; ret->free = free_fn; ret->data = pool_data; return ret; } void *kmem_cache_alloc(struct kmem_cache *cachep, int flags) { struct radix_tree_node *node; if (flags & __GFP_NOWARN) return NULL; pthread_mutex_lock(&cachep->lock); if (cachep->nr_objs) { cachep->nr_objs--; node = cachep->objs; cachep->objs = node->private_data; pthread_mutex_unlock(&cachep->lock); node->private_data = NULL; } else { pthread_mutex_unlock(&cachep->lock); node = malloc(cachep->size); if (cachep->ctor) cachep->ctor(node); } uatomic_inc(&nr_allocated); return node; } void kmem_cache_free(struct kmem_cache *cachep, void *objp) { assert(objp); uatomic_dec(&nr_allocated); pthread_mutex_lock(&cachep->lock); if (cachep->nr_objs > 10) { memset(objp, POISON_FREE, cachep->size); free(objp); } else { struct radix_tree_node *node = objp; cachep->nr_objs++; node->private_data = cachep->objs; cachep->objs = node; } pthread_mutex_unlock(&cachep->lock); } void *kmalloc(size_t size, gfp_t gfp) { void *ret = malloc(size); uatomic_inc(&nr_allocated); return ret; } void kfree(void *p) { if (!p) return; uatomic_dec(&nr_allocated); free(p); } struct kmem_cache * kmem_cache_create(const char *name, size_t size, size_t offset, unsigned long flags, void (*ctor)(void *)) { struct kmem_cache *ret = malloc(sizeof(*ret)); pthread_mutex_init(&ret->lock, NULL); ret->size = size; ret->nr_objs = 0; ret->objs = NULL; ret->ctor = ctor; return ret; } ds-private-remove&id=0becc0ae5b42828785b589f686725ff5bc3b9b25'>diff
diff options
context:
space:
mode:
authorThomas Gleixner <tglx@linutronix.de>2017-01-31 09:37:34 +0100
committerThomas Gleixner <tglx@linutronix.de>2017-01-31 21:47:58 +0100
commit0becc0ae5b42828785b589f686725ff5bc3b9b25 (patch)
treebe6d0e1f37c38ed0a7dd5da2d4b1e93f0fb43101 /sound/soc/omap/omap-mcbsp.c
parent24c2503255d35c269b67162c397a1a1c1e02f6ce (diff)
x86/mce: Make timer handling more robust
Erik reported that on a preproduction hardware a CMCI storm triggers the BUG_ON in add_timer_on(). The reason is that the per CPU MCE timer is started by the CMCI logic before the MCE CPU hotplug callback starts the timer with add_timer_on(). So the timer is already queued which triggers the BUG. Using add_timer_on() is pretty pointless in this code because the timer is strictlty per CPU, initialized as pinned and all operations which arm the timer happen on the CPU to which the timer belongs. Simplify the whole machinery by using mod_timer() instead of add_timer_on() which avoids the problem because mod_timer() can handle already queued timers. Use __start_timer() everywhere so the earliest armed expiry time is preserved. Reported-by: Erik Veijola <erik.veijola@intel.com> Tested-by: Borislav Petkov <bp@alien8.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@alien8.de> Cc: Tony Luck <tony.luck@intel.com> Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1701310936080.3457@nanos Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Diffstat (limited to 'sound/soc/omap/omap-mcbsp.c')