/*
* Copyright 2015, Cyril Bur, IBM Corp.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include "basic_asm.h"
#include "vsx_asm.h"
#long check_vsx(vector int *r3);
#This function wraps storeing VSX regs to the end of an array and a
#call to a comparison function in C which boils down to a memcmp()
FUNC_START(check_vsx)
PUSH_BASIC_STACK(32)
std r3,STACK_FRAME_PARAM(0)(sp)
addi r3, r3, 16 * 12 #Second half of array
bl store_vsx
ld r3,STACK_FRAME_PARAM(0)(sp)
bl vsx_memcmp
POP_BASIC_STACK(32)
blr
FUNC_END(check_vsx)
# int preempt_vmx(vector int *varray, int *threads_starting,
# int *running);
# On starting will (atomically) decrement threads_starting as a signal
# that the VMX have been loaded with varray. Will proceed to check the
# validity of the VMX registers while running is not zero.
FUNC_START(preempt_vsx)
PUSH_BASIC_STACK(512)
std r3,STACK_FRAME_PARAM(0)(sp) # vector int *varray
std r4,STACK_FRAME_PARAM(1)(sp) # int *threads_starting
std r5,STACK_FRAME_PARAM(2)(sp) # int *running
bl load_vsx
nop
sync
# Atomic DEC
ld r3,STACK_FRAME_PARAM(1)(sp)
1: lwarx r4,0,r3
addi r4,r4,-1
stwcx. r4,0,r3
bne- 1b
2: ld r3,STACK_FRAME_PARAM(0)(sp)
bl check_vsx
nop
cmpdi r3,0
bne 3f
ld r4,STACK_FRAME_PARAM(2)(sp)
ld r5,0(r4)
cmpwi r5,0
bne 2b
3: POP_BASIC_STACK(512)
blr
FUNC_END(preempt_vsx)
ux/net-next.git/?h=nds-private-remove'>summaryrefslogtreecommitdiff
dmaengine: pl330: fix double lock
The static bug finder EBA (http://www.iagoabal.eu/eba/) reported the
following double-lock bug:
Double lock:
1. spin_lock_irqsave(pch->lock, flags) at pl330_free_chan_resources:2236;
2. call to function `pl330_release_channel' immediately after;
3. call to function `dma_pl330_rqcb' in line 1753;
4. spin_lock_irqsave(pch->lock, flags) at dma_pl330_rqcb:1505.
I have fixed it as suggested by Marek Szyprowski.
First, I have replaced `pch->lock' with `pl330->lock' in functions
`pl330_alloc_chan_resources' and `pl330_free_chan_resources'. This avoids
the double-lock by acquiring a different lock than `dma_pl330_rqcb'.
NOTE that, as a result, `pl330_free_chan_resources' executes
`list_splice_tail_init' on `pch->work_list' under lock `pl330->lock',
whereas in the rest of the code `pch->work_list' is protected by
`pch->lock'. I don't know if this may cause race conditions. Similarly
`pch->cyclic' is written by `pl330_alloc_chan_resources' under
`pl330->lock' but read by `pl330_tx_submit' under `pch->lock'.
Second, I have removed locking from `pl330_request_channel' and
`pl330_release_channel' functions. Function `pl330_request_channel' is
only called from `pl330_alloc_chan_resources', so the lock is already
held. Function `pl330_release_channel' is called from
`pl330_free_chan_resources', which already holds the lock, and from
`pl330_del'. Function `pl330_del' is called in an error path of
`pl330_probe' and at the end of `pl330_remove', but I assume that there
cannot be concurrent accesses to the protected data at those points.
Signed-off-by: Iago Abal <mail@iagoabal.eu>
Reviewed-by: Marek Szyprowski <m.szyprowski@samsung.com>
Signed-off-by: Vinod Koul <vinod.koul@intel.com>