/* * Copyright (c) 2012 The Chromium OS Authors. All rights reserved. * Use of this source code is governed by the GPLv2 license. * * Test code for seccomp bpf. */ #include <sys/types.h> #include <asm/siginfo.h> #define __have_siginfo_t 1 #define __have_sigval_t 1 #define __have_sigevent_t 1 #include <errno.h> #include <linux/filter.h> #include <sys/prctl.h> #include <sys/ptrace.h> #include <sys/user.h> #include <linux/prctl.h> #include <linux/ptrace.h> #include <linux/seccomp.h> #include <pthread.h> #include <semaphore.h> #include <signal.h> #include <stddef.h> #include <stdbool.h> #include <string.h> #include <time.h> #include <linux/elf.h> #include <sys/uio.h> #include <sys/utsname.h> #include <sys/fcntl.h> #include <sys/mman.h> #include <sys/times.h> #define _GNU_SOURCE #include <unistd.h> #include <sys/syscall.h> #include "test_harness.h" #ifndef PR_SET_PTRACER # define PR_SET_PTRACER 0x59616d61 #endif #ifndef PR_SET_NO_NEW_PRIVS #define PR_SET_NO_NEW_PRIVS 38 #define PR_GET_NO_NEW_PRIVS 39 #endif #ifndef PR_SECCOMP_EXT #define PR_SECCOMP_EXT 43 #endif #ifndef SECCOMP_EXT_ACT #define SECCOMP_EXT_ACT 1 #endif #ifndef SECCOMP_EXT_ACT_TSYNC #define SECCOMP_EXT_ACT_TSYNC 1 #endif #ifndef SECCOMP_MODE_STRICT #define SECCOMP_MODE_STRICT 1 #endif #ifndef SECCOMP_MODE_FILTER #define SECCOMP_MODE_FILTER 2 #endif #ifndef SECCOMP_RET_KILL #define SECCOMP_RET_KILL 0x00000000U /* kill the task immediately */ #define SECCOMP_RET_TRAP 0x00030000U /* disallow and force a SIGSYS */ #define SECCOMP_RET_ERRNO 0x00050000U /* returns an errno */ #define SECCOMP_RET_TRACE 0x7ff00000U /* pass to a tracer or disallow */ #define SECCOMP_RET_ALLOW 0x7fff0000U /* allow */ /* Masks for the return value sections. */ #define SECCOMP_RET_ACTION 0x7fff0000U #define SECCOMP_RET_DATA 0x0000ffffU struct seccomp_data { int nr; __u32 arch; __u64 instruction_pointer; __u64 args[6]; }; #endif #if __BYTE_ORDER == __LITTLE_ENDIAN #define syscall_arg(_n) (offsetof(struct seccomp_data, args[_n])) #elif __BYTE_ORDER == __BIG_ENDIAN #define syscall_arg(_n) (offsetof(struct seccomp_data, args[_n]) + sizeof(__u32)) #else #error "wut? Unknown __BYTE_ORDER?!" #endif #define SIBLING_EXIT_UNKILLED 0xbadbeef #define SIBLING_EXIT_FAILURE 0xbadface #define SIBLING_EXIT_NEWPRIVS 0xbadfeed TEST(mode_strict_support) { long ret; ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_STRICT, NULL, NULL, NULL); ASSERT_EQ(0, ret) { TH_LOG("Kernel does not support CONFIG_SECCOMP"); } syscall(__NR_exit, 1); } TEST_SIGNAL(mode_strict_cannot_call_prctl, SIGKILL) { long ret; ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_STRICT, NULL, NULL, NULL); ASSERT_EQ(0, ret) { TH_LOG("Kernel does not support CONFIG_SECCOMP"); } syscall(__NR_prctl, PR_SET_SECCOMP, SECCOMP_MODE_FILTER, NULL, NULL, NULL); EXPECT_FALSE(true) { TH_LOG("Unreachable!"); } } /* Note! This doesn't test no new privs behavior */ TEST(no_new_privs_support) { long ret; ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); EXPECT_EQ(0, ret) { TH_LOG("Kernel does not support PR_SET_NO_NEW_PRIVS!"); } } /* Tests kernel support by checking for a copy_from_user() fault on * NULL. */ TEST(mode_filter_support) { long ret; ret = prctl(PR_SET_NO_NEW_PRIVS, 1, NULL, 0, 0); ASSERT_EQ(0, ret) { TH_LOG("Kernel does not support PR_SET_NO_NEW_PRIVS!"); } ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, NULL, NULL, NULL); EXPECT_EQ(-1, ret); EXPECT_EQ(EFAULT, errno) { TH_LOG("Kernel does not support CONFIG_SECCOMP_FILTER!"); } } TEST(mode_filter_without_nnp) { struct sock_filter filter[] = { BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW), }; struct sock_fprog prog = { .len = (unsigned short)ARRAY_SIZE(filter), .filter = filter, }; long ret; ret = prctl(PR_GET_NO_NEW_PRIVS, 0, NULL, 0, 0); ASSERT_LE(0, ret) { TH_LOG("Expected 0 or unsupported for NO_NEW_PRIVS"); } errno = 0; ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog, 0, 0); /* Succeeds with CAP_SYS_ADMIN, fails without */ /* TODO(wad) check caps not euid */ if (geteuid()) { EXPECT_EQ(-1, ret); EXPECT_EQ(EACCES, errno); } else { EXPECT_EQ(0, ret); } } #define MAX_INSNS_PER_PATH 32768 TEST(filter_size_limits) { int i; int count = BPF_MAXINSNS + 1; struct sock_filter allow[] = { BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW), }; struct sock_filter *filter; struct sock_fprog prog = { }; long ret; filter = calloc(count, sizeof(*filter)); ASSERT_NE(NULL, filter); for (i = 0; i < count; i++) filter[i] = allow[0]; ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); ASSERT_EQ(0, ret); prog.filter = filter; prog.len = count; /* Too many filter instructions in a single filter. */ ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog, 0, 0); ASSERT_NE(0, ret) { TH_LOG("Installing %d insn filter was allowed", prog.len); } /* One less is okay, though. */ prog.len -= 1; ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog, 0, 0); ASSERT_EQ(0, ret) { TH_LOG("Installing %d insn filter wasn't allowed", prog.len); } } TEST(filter_chain_limits) { int i; int count = BPF_MAXINSNS; struct sock_filter allow[] = { BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW), }; struct sock_filter *filter; struct sock_fprog prog = { }; long ret; filter = calloc(count, sizeof(*filter)); ASSERT_NE(NULL, filter); for (i = 0; i < count; i++) filter[i] = allow[0]; ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); ASSERT_EQ(0, ret); prog.filter = filter; prog.len = 1; ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog, 0, 0); ASSERT_EQ(0, ret); prog.len = count; /* Too many total filter instructions. */ for (i = 0; i < MAX_INSNS_PER_PATH; i++) { ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog, 0, 0); if (ret != 0) break; } ASSERT_NE(0, ret) { TH_LOG("Allowed %d %d-insn filters (total with penalties:%d)", i, count, i * (count + 4)); } } TEST(mode_filter_cannot_move_to_strict) { struct sock_filter filter[] = { BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW), }; struct sock_fprog prog = { .len = (unsigned short)ARRAY_SIZE(filter), .filter = filter, }; long ret; ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); ASSERT_EQ(0, ret); ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog, 0, 0); ASSERT_EQ(0, ret); ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_STRICT, NULL, 0, 0); EXPECT_EQ(-1, ret); EXPECT_EQ(EINVAL, errno); } TEST(mode_filter_get_seccomp) { struct sock_filter filter[] = { BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW), }; struct sock_fprog prog = { .len = (unsigned short)ARRAY_SIZE(filter), .filter = filter, }; long ret; ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); ASSERT_EQ(0, ret); ret = prctl(PR_GET_SECCOMP, 0, 0, 0, 0); EXPECT_EQ(0, ret); ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog, 0, 0); ASSERT_EQ(0, ret); ret = prctl(PR_GET_SECCOMP, 0, 0, 0, 0); EXPECT_EQ(2, ret); } TEST(ALLOW_all) { struct sock_filter filter[] = { BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW), }; struct sock_fprog prog = { .len = (unsigned short)ARRAY_SIZE(filter), .filter = filter, }; long ret; ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); ASSERT_EQ(0, ret); ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog); ASSERT_EQ(0, ret); } TEST(empty_prog) { struct sock_filter filter[] = { }; struct sock_fprog prog = { .len = (unsigned short)ARRAY_SIZE(filter), .filter = filter, }; long ret; ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); ASSERT_EQ(0, ret); ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog); EXPECT_EQ(-1, ret); EXPECT_EQ(EINVAL, errno); } TEST_SIGNAL(unknown_ret_is_kill_inside, SIGSYS) { struct sock_filter filter[] = { BPF_STMT(BPF_RET|BPF_K, 0x10000000U), }; struct sock_fprog prog = { .len = (unsigned short)ARRAY_SIZE(filter), .filter = filter, }; long ret; ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); ASSERT_EQ(0, ret); ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog); ASSERT_EQ(0, ret); EXPECT_EQ(0, syscall(__NR_getpid)) { TH_LOG("getpid() shouldn't ever return"); } } /* return code >= 0x80000000 is unused. */ TEST_SIGNAL(unknown_ret_is_kill_above_allow, SIGSYS) { struct sock_filter filter[] = { BPF_STMT(BPF_RET|BPF_K, 0x90000000U), }; struct sock_fprog prog = { .len = (unsigned short)ARRAY_SIZE(filter), .filter = filter, }; long ret; ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); ASSERT_EQ(0, ret); ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog); ASSERT_EQ(0, ret); EXPECT_EQ(0, syscall(__NR_getpid)) { TH_LOG("getpid() shouldn't ever return"); } } TEST_SIGNAL(KILL_all, SIGSYS) { struct sock_filter filter[] = { BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_KILL), }; struct sock_fprog prog = { .len = (unsigned short)ARRAY_SIZE(filter), .filter = filter, }; long ret; ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); ASSERT_EQ(0, ret); ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog); ASSERT_EQ(0, ret); } TEST_SIGNAL(KILL_one, SIGSYS) { struct sock_filter filter[] = { BPF_STMT(BPF_LD|BPF_W|BPF_ABS, offsetof(struct seccomp_data, nr)), BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_getpid, 0, 1), BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_KILL), BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW), }; struct sock_fprog prog = { .len = (unsigned short)ARRAY_SIZE(filter), .filter = filter, }; long ret; pid_t parent = getppid(); ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); ASSERT_EQ(0, ret); ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog); ASSERT_EQ(0, ret); EXPECT_EQ(parent, syscall(__NR_getppid)); /* getpid() should never return. */ EXPECT_EQ(0, syscall(__NR_getpid)); } TEST_SIGNAL(KILL_one_arg_one, SIGSYS) { void *fatal_address; struct sock_filter filter[] = { BPF_STMT(BPF_LD|BPF_W|BPF_ABS, offsetof(struct seccomp_data, nr)), BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_times, 1, 0), BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW), /* Only both with lower 32-bit for now. */ BPF_STMT(BPF_LD|BPF_W|BPF_ABS, syscall_arg(0)), BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, (unsigned long)&fatal_address, 0, 1), BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_KILL), BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW), }; struct sock_fprog prog = { .len = (unsigned short)ARRAY_SIZE(filter), .filter = filter, }; long ret; pid_t parent = getppid(); struct tms timebuf; clock_t clock = times(&timebuf); ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); ASSERT_EQ(0, ret); ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog); ASSERT_EQ(0, ret); EXPECT_EQ(parent, syscall(__NR_getppid)); EXPECT_LE(clock, syscall(__NR_times, &timebuf)); /* times() should never return. */ EXPECT_EQ(0, syscall(__NR_times, &fatal_address)); } TEST_SIGNAL(KILL_one_arg_six, SIGSYS) { #ifndef __NR_mmap2 int sysno = __NR_mmap; #else int sysno = __NR_mmap2; #endif struct sock_filter filter[] = { BPF_STMT(BPF_LD|BPF_W|BPF_ABS, offsetof(struct seccomp_data, nr)), BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, sysno, 1, 0), BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW), /* Only both with lower 32-bit for now. */ BPF_STMT(BPF_LD|BPF_W|BPF_ABS, syscall_arg(5)), BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, 0x0C0FFEE, 0, 1), BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_KILL), BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW), }; struct sock_fprog prog = { .len = (unsigned short)ARRAY_SIZE(filter), .filter = filter, }; long ret; pid_t parent = getppid(); int fd; void *map1, *map2; int page_size = sysconf(_SC_PAGESIZE); ASSERT_LT(0, page_size); ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); ASSERT_EQ(0, ret); ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog); ASSERT_EQ(0, ret); fd = open("/dev/zero", O_RDONLY); ASSERT_NE(-1, fd); EXPECT_EQ(parent, syscall(__NR_getppid)); map1 = (void *)syscall(sysno, NULL, page_size, PROT_READ, MAP_PRIVATE, fd, page_size); EXPECT_NE(MAP_FAILED, map1); /* mmap2() should never return. */ map2 = (void *)syscall(sysno, NULL, page_size, PROT_READ, MAP_PRIVATE, fd, 0x0C0FFEE); EXPECT_EQ(MAP_FAILED, map2); /* The test failed, so clean up the resources. */ munmap(map1, page_size); munmap(map2, page_size); close(fd); } /* TODO(wad) add 64-bit versus 32-bit arg tests. */ TEST(arg_out_of_range) { struct sock_filter filter[] = { BPF_STMT(BPF_LD|BPF_W|BPF_ABS, syscall_arg(6)), BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW), }; struct sock_fprog prog = { .len = (unsigned short)ARRAY_SIZE(filter), .filter = filter, }; long ret; ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); ASSERT_EQ(0, ret); ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog); EXPECT_EQ(-1, ret); EXPECT_EQ(EINVAL, errno); } TEST(ERRNO_valid) { struct sock_filter filter[] = { BPF_STMT(BPF_LD|BPF_W|BPF_ABS, offsetof(struct seccomp_data, nr)), BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_read, 0, 1), BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ERRNO | E2BIG), BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW), }; struct sock_fprog prog = { .len = (unsigned short)ARRAY_SIZE(filter), .filter = filter, }; long ret; pid_t parent = getppid(); ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); ASSERT_EQ(0, ret); ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog); ASSERT_EQ(0, ret); EXPECT_EQ(parent, syscall(__NR_getppid)); EXPECT_EQ(-1, read(0, NULL, 0)); EXPECT_EQ(E2BIG, errno); } TEST(ERRNO_zero) { struct sock_filter filter[] = { BPF_STMT(BPF_LD|BPF_W|BPF_ABS, offsetof(struct seccomp_data, nr)), BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_read, 0, 1), BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ERRNO | 0), BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW), }; struct sock_fprog prog = { .len = (unsigned short)ARRAY_SIZE(filter), .filter = filter, }; long ret; pid_t parent = getppid(); ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); ASSERT_EQ(0, ret); ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog); ASSERT_EQ(0, ret); EXPECT_EQ(parent, syscall(__NR_getppid)); /* "errno" of 0 is ok. */ EXPECT_EQ(0, read(0, NULL, 0)); } TEST(ERRNO_capped) { struct sock_filter filter[] = { BPF_STMT(BPF_LD|BPF_W|BPF_ABS, offsetof(struct seccomp_data, nr)), BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_read, 0, 1), BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ERRNO | 4096), BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW), }; struct sock_fprog prog = { .len = (unsigned short)ARRAY_SIZE(filter), .filter = filter, }; long ret; pid_t parent = getppid(); ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); ASSERT_EQ(0, ret); ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog); ASSERT_EQ(0, ret); EXPECT_EQ(parent, syscall(__NR_getppid)); EXPECT_EQ(-1, read(0, NULL, 0)); EXPECT_EQ(4095, errno); } FIXTURE_DATA(TRAP) { struct sock_fprog prog; }; FIXTURE_SETUP(TRAP) { struct sock_filter filter[] = { BPF_STMT(BPF_LD|BPF_W|BPF_ABS, offsetof(struct seccomp_data, nr)), BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_getpid, 0, 1), BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_TRAP), BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW), }; memset(&self->prog, 0, sizeof(self->prog)); self->prog.filter = malloc(sizeof(filter)); ASSERT_NE(NULL, self->prog.filter); memcpy(self->prog.filter, filter, sizeof(filter)); self->prog.len = (unsigned short)ARRAY_SIZE(filter); } FIXTURE_TEARDOWN(TRAP) { if (self->prog.filter) free(self->prog.filter); } TEST_F_SIGNAL(TRAP, dfl, SIGSYS) { long ret; ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); ASSERT_EQ(0, ret); ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->prog); ASSERT_EQ(0, ret); syscall(__NR_getpid); } /* Ensure that SIGSYS overrides SIG_IGN */ TEST_F_SIGNAL(TRAP, ign, SIGSYS) { long ret; ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); ASSERT_EQ(0, ret); signal(SIGSYS, SIG_IGN); ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->prog); ASSERT_EQ(0, ret); syscall(__NR_getpid); } static struct siginfo TRAP_info; static volatile int TRAP_nr; static void TRAP_action(int nr, siginfo_t *info, void *void_context) { memcpy(&TRAP_info, info, sizeof(TRAP_info)); TRAP_nr = nr; } TEST_F(TRAP, handler) { int ret, test; struct sigaction act; sigset_t mask; memset(&act, 0, sizeof(act)); sigemptyset(&mask); sigaddset(&mask, SIGSYS); act.sa_sigaction = &TRAP_action; act.sa_flags = SA_SIGINFO; ret = sigaction(SIGSYS, &act, NULL); ASSERT_EQ(0, ret) { TH_LOG("sigaction failed"); } ret = sigprocmask(SIG_UNBLOCK, &mask, NULL); ASSERT_EQ(0, ret) { TH_LOG("sigprocmask failed"); } ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); ASSERT_EQ(0, ret); ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->prog); ASSERT_EQ(0, ret); TRAP_nr = 0; memset(&TRAP_info, 0, sizeof(TRAP_info)); /* Expect the registers to be rolled back. (nr = error) may vary * based on arch. */ ret = syscall(__NR_getpid); /* Silence gcc warning about volatile. */ test = TRAP_nr; EXPECT_EQ(SIGSYS, test); struct local_sigsys { void *_call_addr; /* calling user insn */ int _syscall; /* triggering system call number */ unsigned int _arch; /* AUDIT_ARCH_* of syscall */ } *sigsys = (struct local_sigsys *) #ifdef si_syscall &(TRAP_info.si_call_addr); #else &TRAP_info.si_pid; #endif EXPECT_EQ(__NR_getpid, sigsys->_syscall); /* Make sure arch is non-zero. */ EXPECT_NE(0, sigsys->_arch); EXPECT_NE(0, (unsigned long)sigsys->_call_addr); } FIXTURE_DATA(precedence) { struct sock_fprog allow; struct sock_fprog trace; struct sock_fprog error; struct sock_fprog trap; struct sock_fprog kill; }; FIXTURE_SETUP(precedence) { struct sock_filter allow_insns[] = { BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW), }; struct sock_filter trace_insns[] = { BPF_STMT(BPF_LD|BPF_W|BPF_ABS, offsetof(struct seccomp_data, nr)), BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_getpid, 1, 0), BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW), BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_TRACE), }; struct sock_filter error_insns[] = { BPF_STMT(BPF_LD|BPF_W|BPF_ABS, offsetof(struct seccomp_data, nr)), BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_getpid, 1, 0), BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW), BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ERRNO), }; struct sock_filter trap_insns[] = { BPF_STMT(BPF_LD|BPF_W|BPF_ABS, offsetof(struct seccomp_data, nr)), BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_getpid, 1, 0), BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW), BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_TRAP), }; struct sock_filter kill_insns[] = { BPF_STMT(BPF_LD|BPF_W|BPF_ABS, offsetof(struct seccomp_data, nr)), BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_getpid, 1, 0), BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW), BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_KILL), }; memset(self, 0, sizeof(*self)); #define FILTER_ALLOC(_x) \ self->_x.filter = malloc(sizeof(_x##_insns)); \ ASSERT_NE(NULL, self->_x.filter); \ memcpy(self->_x.filter, &_x##_insns, sizeof(_x##_insns)); \ self->_x.len = (unsigned short)ARRAY_SIZE(_x##_insns) FILTER_ALLOC(allow); FILTER_ALLOC(trace); FILTER_ALLOC(error); FILTER_ALLOC(trap); FILTER_ALLOC(kill); } FIXTURE_TEARDOWN(precedence) { #define FILTER_FREE(_x) if (self->_x.filter) free(self->_x.filter) FILTER_FREE(allow); FILTER_FREE(trace); FILTER_FREE(error); FILTER_FREE(trap); FILTER_FREE(kill); } TEST_F(precedence, allow_ok) { pid_t parent, res = 0; long ret; parent = getppid(); ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); ASSERT_EQ(0, ret); ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->allow); ASSERT_EQ(0, ret); ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->trace); ASSERT_EQ(0, ret); ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->error); ASSERT_EQ(0, ret); ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->trap); ASSERT_EQ(0, ret); ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->kill); ASSERT_EQ(0, ret); /* Should work just fine. */ res = syscall(__NR_getppid); EXPECT_EQ(parent, res); } TEST_F_SIGNAL(precedence, kill_is_highest, SIGSYS) { pid_t parent, res = 0; long ret; parent = getppid(); ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); ASSERT_EQ(0, ret); ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->allow); ASSERT_EQ(0, ret); ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->trace); ASSERT_EQ(0, ret); ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->error); ASSERT_EQ(0, ret); ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->trap); ASSERT_EQ(0, ret); ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->kill); ASSERT_EQ(0, ret); /* Should work just fine. */ res = syscall(__NR_getppid); EXPECT_EQ(parent, res); /* getpid() should never return. */ res = syscall(__NR_getpid); EXPECT_EQ(0, res); } TEST_F_SIGNAL(precedence, kill_is_highest_in_any_order, SIGSYS) { pid_t parent; long ret; parent = getppid(); ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); ASSERT_EQ(0, ret); ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->allow); ASSERT_EQ(0, ret); ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->kill); ASSERT_EQ(0, ret); ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->error); ASSERT_EQ(0, ret); ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->trace); ASSERT_EQ(0, ret); ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->trap); ASSERT_EQ(0, ret); /* Should work just fine. */ EXPECT_EQ(parent, syscall(__NR_getppid)); /* getpid() should never return. */ EXPECT_EQ(0, syscall(__NR_getpid)); } TEST_F_SIGNAL(precedence, trap_is_second, SIGSYS) { pid_t parent; long ret; parent = getppid(); ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); ASSERT_EQ(0, ret); ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->allow); ASSERT_EQ(0, ret); ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->trace); ASSERT_EQ(0, ret); ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->error); ASSERT_EQ(0, ret); ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->trap); ASSERT_EQ(0, ret); /* Should work just fine. */ EXPECT_EQ(parent, syscall(__NR_getppid)); /* getpid() should never return. */ EXPECT_EQ(0, syscall(__NR_getpid)); } TEST_F_SIGNAL(precedence, trap_is_second_in_any_order, SIGSYS) { pid_t parent; long ret; parent = getppid(); ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); ASSERT_EQ(0, ret); ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->allow); ASSERT_EQ(0, ret); ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->trap); ASSERT_EQ(0, ret); ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->trace); ASSERT_EQ(0, ret); ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->error); ASSERT_EQ(0, ret); /* Should work just fine. */ EXPECT_EQ(parent, syscall(__NR_getppid)); /* getpid() should never return. */ EXPECT_EQ(0, syscall(__NR_getpid)); } TEST_F(precedence, errno_is_third) { pid_t parent; long ret; parent = getppid(); ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); ASSERT_EQ(0, ret); ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->allow); ASSERT_EQ(0, ret); ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->trace); ASSERT_EQ(0, ret); ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->error); ASSERT_EQ(0, ret); /* Should work just fine. */ EXPECT_EQ(parent, syscall(__NR_getppid)); EXPECT_EQ(0, syscall(__NR_getpid)); } TEST_F(precedence, errno_is_third_in_any_order) { pid_t parent; long ret; parent = getppid(); ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); ASSERT_EQ(0, ret); ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->error); ASSERT_EQ(0, ret); ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->trace); ASSERT_EQ(0, ret); ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->allow); ASSERT_EQ(0, ret); /* Should work just fine. */ EXPECT_EQ(parent, syscall(__NR_getppid)); EXPECT_EQ(0, syscall(__NR_getpid)); } TEST_F(precedence, trace_is_fourth) { pid_t parent; long ret; parent = getppid(); ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); ASSERT_EQ(0, ret); ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->allow); ASSERT_EQ(0, ret); ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->trace); ASSERT_EQ(0, ret); /* Should work just fine. */ EXPECT_EQ(parent, syscall(__NR_getppid)); /* No ptracer */ EXPECT_EQ(-1, syscall(__NR_getpid)); } TEST_F(precedence, trace_is_fourth_in_any_order) { pid_t parent; long ret; parent = getppid(); ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); ASSERT_EQ(0, ret); ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->trace); ASSERT_EQ(0, ret); ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->allow); ASSERT_EQ(0, ret); /* Should work just fine. */ EXPECT_EQ(parent, syscall(__NR_getppid)); /* No ptracer */ EXPECT_EQ(-1, syscall(__NR_getpid)); } #ifndef PTRACE_O_TRACESECCOMP #define PTRACE_O_TRACESECCOMP 0x00000080 #endif /* Catch the Ubuntu 12.04 value error. */ #if PTRACE_EVENT_SECCOMP != 7 #undef PTRACE_EVENT_SECCOMP #endif #ifndef PTRACE_EVENT_SECCOMP #define PTRACE_EVENT_SECCOMP 7 #endif #define IS_SECCOMP_EVENT(status) ((status >> 16) == PTRACE_EVENT_SECCOMP) bool tracer_running; void tracer_stop(int sig) { tracer_running = false; } typedef void tracer_func_t(struct __test_metadata *_metadata, pid_t tracee, int status, void *args); void start_tracer(struct __test_metadata *_metadata, int fd, pid_t tracee, tracer_func_t tracer_func, void *args, bool ptrace_syscall) { int ret = -1; struct sigaction action = { .sa_handler = tracer_stop, }; /* Allow external shutdown. */ tracer_running = true; ASSERT_EQ(0, sigaction(SIGUSR1, &action, NULL)); errno = 0; while (ret == -1 && errno != EINVAL) ret = ptrace(PTRACE_ATTACH, tracee, NULL, 0); ASSERT_EQ(0, ret) { kill(tracee, SIGKILL); } /* Wait for attach stop */ wait(NULL); ret = ptrace(PTRACE_SETOPTIONS, tracee, NULL, ptrace_syscall ? PTRACE_O_TRACESYSGOOD : PTRACE_O_TRACESECCOMP); ASSERT_EQ(0, ret) { TH_LOG("Failed to set PTRACE_O_TRACESECCOMP"); kill(tracee, SIGKILL); } ret = ptrace(ptrace_syscall ? PTRACE_SYSCALL : PTRACE_CONT, tracee, NULL, 0); ASSERT_EQ(0, ret); /* Unblock the tracee */ ASSERT_EQ(1, write(fd, "A", 1)); ASSERT_EQ(0, close(fd)); /* Run until we're shut down. Must assert to stop execution. */ while (tracer_running) { int status; if (wait(&status) != tracee) continue; if (WIFSIGNALED(status) || WIFEXITED(status)) /* Child is dead. Time to go. */ return; /* Check if this is a seccomp event. */ ASSERT_EQ(!ptrace_syscall, IS_SECCOMP_EVENT(status)); tracer_func(_metadata, tracee, status, args); ret = ptrace(ptrace_syscall ? PTRACE_SYSCALL : PTRACE_CONT, tracee, NULL, 0); ASSERT_EQ(0, ret); } /* Directly report the status of our test harness results. */ syscall(__NR_exit, _metadata->passed ? EXIT_SUCCESS : EXIT_FAILURE); } /* Common tracer setup/teardown functions. */ void cont_handler(int num) { } pid_t setup_trace_fixture(struct __test_metadata *_metadata, tracer_func_t func, void *args, bool ptrace_syscall) { char sync; int pipefd[2]; pid_t tracer_pid; pid_t tracee = getpid(); /* Setup a pipe for clean synchronization. */ ASSERT_EQ(0, pipe(pipefd)); /* Fork a child which we'll promote to tracer */ tracer_pid = fork(); ASSERT_LE(0, tracer_pid); signal(SIGALRM, cont_handler); if (tracer_pid == 0) { close(pipefd[0]); start_tracer(_metadata, pipefd[1], tracee, func, args, ptrace_syscall); syscall(__NR_exit, 0); } close(pipefd[1]); prctl(PR_SET_PTRACER, tracer_pid, 0, 0, 0); read(pipefd[0], &sync, 1); close(pipefd[0]); return tracer_pid; } void teardown_trace_fixture(struct __test_metadata *_metadata, pid_t tracer) { if (tracer) { int status; /* * Extract the exit code from the other process and * adopt it for ourselves in case its asserts failed. */ ASSERT_EQ(0, kill(tracer, SIGUSR1)); ASSERT_EQ(tracer, waitpid(tracer, &status, 0)); if (WEXITSTATUS(status)) _metadata->passed = 0; } } /* "poke" tracer arguments and function. */ struct tracer_args_poke_t { unsigned long poke_addr; }; void tracer_poke(struct __test_metadata *_metadata, pid_t tracee, int status, void *args) { int ret; unsigned long msg; struct tracer_args_poke_t *info = (struct tracer_args_poke_t *)args; ret = ptrace(PTRACE_GETEVENTMSG, tracee, NULL, &msg); EXPECT_EQ(0, ret); /* If this fails, don't try to recover. */ ASSERT_EQ(0x1001, msg) { kill(tracee, SIGKILL); } /* * Poke in the message. * Registers are not touched to try to keep this relatively arch * agnostic. */ ret = ptrace(PTRACE_POKEDATA, tracee, info->poke_addr, 0x1001); EXPECT_EQ(0, ret); } FIXTURE_DATA(TRACE_poke) { struct sock_fprog prog; pid_t tracer; long poked; struct tracer_args_poke_t tracer_args; }; FIXTURE_SETUP(TRACE_poke) { struct sock_filter filter[] = { BPF_STMT(BPF_LD|BPF_W|BPF_ABS, offsetof(struct seccomp_data, nr)), BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_read, 0, 1), BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_TRACE | 0x1001), BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW), }; self->poked = 0; memset(&self->prog, 0, sizeof(self->prog)); self->prog.filter = malloc(sizeof(filter)); ASSERT_NE(NULL, self->prog.filter); memcpy(self->prog.filter, filter, sizeof(filter)); self->prog.len = (unsigned short)ARRAY_SIZE(filter); /* Set up tracer args. */ self->tracer_args.poke_addr = (unsigned long)&self->poked; /* Launch tracer. */ self->tracer = setup_trace_fixture(_metadata, tracer_poke, &self->tracer_args, false); } FIXTURE_TEARDOWN(TRACE_poke) { teardown_trace_fixture(_metadata, self->tracer); if (self->prog.filter) free(self->prog.filter); } TEST_F(TRACE_poke, read_has_side_effects) { ssize_t ret; ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); ASSERT_EQ(0, ret); ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->prog, 0, 0); ASSERT_EQ(0, ret); EXPECT_EQ(0, self->poked); ret = read(-1, NULL, 0); EXPECT_EQ(-1, ret); EXPECT_EQ(0x1001, self->poked); } TEST_F(TRACE_poke, getpid_runs_normally) { long ret; ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); ASSERT_EQ(0, ret); ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->prog, 0, 0); ASSERT_EQ(0, ret); EXPECT_EQ(0, self->poked); EXPECT_NE(0, syscall(__NR_getpid)); EXPECT_EQ(0, self->poked); } #if defined(__x86_64__) # define ARCH_REGS struct user_regs_struct # define SYSCALL_NUM orig_rax # define SYSCALL_RET rax #elif defined(__i386__) # define ARCH_REGS struct user_regs_struct # define SYSCALL_NUM orig_eax # define SYSCALL_RET eax #elif defined(__arm__) # define ARCH_REGS struct pt_regs # define SYSCALL_NUM ARM_r7 # define SYSCALL_RET ARM_r0 #elif defined(__aarch64__) # define ARCH_REGS struct user_pt_regs # define SYSCALL_NUM regs[8] # define SYSCALL_RET regs[0] #elif defined(__hppa__) # define ARCH_REGS struct user_regs_struct # define SYSCALL_NUM gr[20] # define SYSCALL_RET gr[28] #elif defined(__powerpc__) # define ARCH_REGS struct pt_regs # define SYSCALL_NUM gpr[0] # define SYSCALL_RET gpr[3] #elif defined(__s390__) # define ARCH_REGS s390_regs # define SYSCALL_NUM gprs[2] # define SYSCALL_RET gprs[2] #elif defined(__mips__) # define ARCH_REGS struct pt_regs # define SYSCALL_NUM regs[2] # define SYSCALL_SYSCALL_NUM regs[4] # define SYSCALL_RET regs[2] # define SYSCALL_NUM_RET_SHARE_REG #else # error "Do not know how to find your architecture's registers and syscalls" #endif /* Use PTRACE_GETREGS and PTRACE_SETREGS when available. This is useful for * architectures without HAVE_ARCH_TRACEHOOK (e.g. User-mode Linux). */ #if defined(__x86_64__) || defined(__i386__) || defined(__mips__) #define HAVE_GETREGS #endif /* Architecture-specific syscall fetching routine. */ int get_syscall(struct __test_metadata *_metadata, pid_t tracee) { ARCH_REGS regs; #ifdef HAVE_GETREGS EXPECT_EQ(0, ptrace(PTRACE_GETREGS, tracee, 0, ®s)) { TH_LOG("PTRACE_GETREGS failed"); return -1; } #else struct iovec iov; iov.iov_base = ®s; iov.iov_len = sizeof(regs); EXPECT_EQ(0, ptrace(PTRACE_GETREGSET, tracee, NT_PRSTATUS, &iov)) { TH_LOG("PTRACE_GETREGSET failed"); return -1; } #endif #if defined(__mips__) if (regs.SYSCALL_NUM == __NR_O32_Linux) return regs.SYSCALL_SYSCALL_NUM; #endif return regs.SYSCALL_NUM; } /* Architecture-specific syscall changing routine. */ void change_syscall(struct __test_metadata *_metadata, pid_t tracee, int syscall) { int ret; ARCH_REGS regs; #ifdef HAVE_GETREGS ret = ptrace(PTRACE_GETREGS, tracee, 0, ®s); #else struct iovec iov; iov.iov_base = ®s; iov.iov_len = sizeof(regs); ret = ptrace(PTRACE_GETREGSET, tracee, NT_PRSTATUS, &iov); #endif EXPECT_EQ(0, ret); #if defined(__x86_64__) || defined(__i386__) || defined(__powerpc__) || \ defined(__s390__) || defined(__hppa__) { regs.SYSCALL_NUM = syscall; } #elif defined(__mips__) { if (regs.SYSCALL_NUM == __NR_O32_Linux) regs.SYSCALL_SYSCALL_NUM = syscall; else regs.SYSCALL_NUM = syscall; } #elif defined(__arm__) # ifndef PTRACE_SET_SYSCALL # define PTRACE_SET_SYSCALL 23 # endif { ret = ptrace(PTRACE_SET_SYSCALL, tracee, NULL, syscall); EXPECT_EQ(0, ret); } #elif defined(__aarch64__) # ifndef NT_ARM_SYSTEM_CALL # define NT_ARM_SYSTEM_CALL 0x404 # endif { iov.iov_base = &syscall; iov.iov_len = sizeof(syscall); ret = ptrace(PTRACE_SETREGSET, tracee, NT_ARM_SYSTEM_CALL, &iov); EXPECT_EQ(0, ret); } #else ASSERT_EQ(1, 0) { TH_LOG("How is the syscall changed on this architecture?"); } #endif /* If syscall is skipped, change return value. */ if (syscall == -1) #ifdef SYSCALL_NUM_RET_SHARE_REG TH_LOG("Can't modify syscall return on this architecture"); #else regs.SYSCALL_RET = 1; #endif #ifdef HAVE_GETREGS ret = ptrace(PTRACE_SETREGS, tracee, 0, ®s); #else iov.iov_base = ®s; iov.iov_len = sizeof(regs); ret = ptrace(PTRACE_SETREGSET, tracee, NT_PRSTATUS, &iov); #endif EXPECT_EQ(0, ret); } void tracer_syscall(struct __test_metadata *_metadata, pid_t tracee, int status, void *args) { int ret; unsigned long msg; /* Make sure we got the right message. */ ret = ptrace(PTRACE_GETEVENTMSG, tracee, NULL, &msg); EXPECT_EQ(0, ret); /* Validate and take action on expected syscalls. */ switch (msg) { case 0x1002: /* change getpid to getppid. */ EXPECT_EQ(__NR_getpid, get_syscall(_metadata, tracee)); change_syscall(_metadata, tracee, __NR_getppid); break; case 0x1003: /* skip gettid. */ EXPECT_EQ(__NR_gettid, get_syscall(_metadata, tracee)); change_syscall(_metadata, tracee, -1); break; case 0x1004: /* do nothing (allow getppid) */ EXPECT_EQ(__NR_getppid, get_syscall(_metadata, tracee)); break; default: EXPECT_EQ(0, msg) { TH_LOG("Unknown PTRACE_GETEVENTMSG: 0x%lx", msg); kill(tracee, SIGKILL); } } } void tracer_ptrace(struct __test_metadata *_metadata, pid_t tracee, int status, void *args) { int ret, nr; unsigned long msg; static bool entry; /* Make sure we got an empty message. */ ret = ptrace(PTRACE_GETEVENTMSG, tracee, NULL, &msg); EXPECT_EQ(0, ret); EXPECT_EQ(0, msg); /* The only way to tell PTRACE_SYSCALL entry/exit is by counting. */ entry = !entry; if (!entry) return; nr = get_syscall(_metadata, tracee); if (nr == __NR_getpid) change_syscall(_metadata, tracee, __NR_getppid); } FIXTURE_DATA(TRACE_syscall) { struct sock_fprog prog; pid_t tracer, mytid, mypid, parent; }; FIXTURE_SETUP(TRACE_syscall) { struct sock_filter filter[] = { BPF_STMT(BPF_LD|BPF_W|BPF_ABS, offsetof(struct seccomp_data, nr)), BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_getpid, 0, 1), BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_TRACE | 0x1002), BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_gettid, 0, 1), BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_TRACE | 0x1003), BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_getppid, 0, 1), BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_TRACE | 0x1004), BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW), }; memset(&self->prog, 0, sizeof(self->prog)); self->prog.filter = malloc(sizeof(filter)); ASSERT_NE(NULL, self->prog.filter); memcpy(self->prog.filter, filter, sizeof(filter)); self->prog.len = (unsigned short)ARRAY_SIZE(filter); /* Prepare some testable syscall results. */ self->mytid = syscall(__NR_gettid); ASSERT_GT(self->mytid, 0); ASSERT_NE(self->mytid, 1) { TH_LOG("Running this test as init is not supported. :)"); } self->mypid = getpid(); ASSERT_GT(self->mypid, 0); ASSERT_EQ(self->mytid, self->mypid); self->parent = getppid(); ASSERT_GT(self->parent, 0); ASSERT_NE(self->parent, self->mypid); /* Launch tracer. */ self->tracer = setup_trace_fixture(_metadata, tracer_syscall, NULL, false); } FIXTURE_TEARDOWN(TRACE_syscall) { teardown_trace_fixture(_metadata, self->tracer); if (self->prog.filter) free(self->prog.filter); } TEST_F(TRACE_syscall, syscall_allowed) { long ret; ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); ASSERT_EQ(0, ret); ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->prog, 0, 0); ASSERT_EQ(0, ret); /* getppid works as expected (no changes). */ EXPECT_EQ(self->parent, syscall(__NR_getppid)); EXPECT_NE(self->mypid, syscall(__NR_getppid)); } TEST_F(TRACE_syscall, syscall_redirected) { long ret; ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); ASSERT_EQ(0, ret); ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->prog, 0, 0); ASSERT_EQ(0, ret); /* getpid has been redirected to getppid as expected. */ EXPECT_EQ(self->parent, syscall(__NR_getpid)); EXPECT_NE(self->mypid, syscall(__NR_getpid)); } TEST_F(TRACE_syscall, syscall_dropped) { long ret; ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); ASSERT_EQ(0, ret); ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->prog, 0, 0); ASSERT_EQ(0, ret); #ifdef SYSCALL_NUM_RET_SHARE_REG /* gettid has been skipped */ EXPECT_EQ(-1, syscall(__NR_gettid)); #else /* gettid has been skipped and an altered return value stored. */ EXPECT_EQ(1, syscall(__NR_gettid)); #endif EXPECT_NE(self->mytid, syscall(__NR_gettid)); } TEST_F(TRACE_syscall, skip_after_RET_TRACE) { struct sock_filter filter[] = { BPF_STMT(BPF_LD|BPF_W|BPF_ABS, offsetof(struct seccomp_data, nr)), BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_getppid, 0, 1), BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ERRNO | EPERM), BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW), }; struct sock_fprog prog = { .len = (unsigned short)ARRAY_SIZE(filter), .filter = filter, }; long ret; ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); ASSERT_EQ(0, ret); /* Install fixture filter. */ ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->prog, 0, 0); ASSERT_EQ(0, ret); /* Install "errno on getppid" filter. */ ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog, 0, 0); ASSERT_EQ(0, ret); /* Tracer will redirect getpid to getppid, and we should see EPERM. */ EXPECT_EQ(-1, syscall(__NR_getpid)); EXPECT_EQ(EPERM, errno); } TEST_F_SIGNAL(TRACE_syscall, kill_after_RET_TRACE, SIGSYS) { struct sock_filter filter[] = { BPF_STMT(BPF_LD|BPF_W|BPF_ABS, offsetof(struct seccomp_data, nr)), BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_getppid, 0, 1), BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_KILL), BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW), }; struct sock_fprog prog = { .len = (unsigned short)ARRAY_SIZE(filter), .filter = filter, }; long ret; ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); ASSERT_EQ(0, ret); /* Install fixture filter. */ ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->prog, 0, 0); ASSERT_EQ(0, ret); /* Install "death on getppid" filter. */ ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog, 0, 0); ASSERT_EQ(0, ret); /* Tracer will redirect getpid to getppid, and we should die. */ EXPECT_NE(self->mypid, syscall(__NR_getpid)); } TEST_F(TRACE_syscall, skip_after_ptrace) { struct sock_filter filter[] = { BPF_STMT(BPF_LD|BPF_W|BPF_ABS, offsetof(struct seccomp_data, nr)), BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_getppid, 0, 1), BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ERRNO | EPERM), BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW), }; struct sock_fprog prog = { .len = (unsigned short)ARRAY_SIZE(filter), .filter = filter, }; long ret; /* Swap SECCOMP_RET_TRACE tracer for PTRACE_SYSCALL tracer. */ teardown_trace_fixture(_metadata, self->tracer); self->tracer = setup_trace_fixture(_metadata, tracer_ptrace, NULL, true); ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); ASSERT_EQ(0, ret); /* Install "errno on getppid" filter. */ ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog, 0, 0); ASSERT_EQ(0, ret); /* Tracer will redirect getpid to getppid, and we should see EPERM. */ EXPECT_EQ(-1, syscall(__NR_getpid)); EXPECT_EQ(EPERM, errno); } TEST_F_SIGNAL(TRACE_syscall, kill_after_ptrace, SIGSYS) { struct sock_filter filter[] = { BPF_STMT(BPF_LD|BPF_W|BPF_ABS, offsetof(struct seccomp_data, nr)), BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_getppid, 0, 1), BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_KILL), BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW), }; struct sock_fprog prog = { .len = (unsigned short)ARRAY_SIZE(filter), .filter = filter, }; long ret; /* Swap SECCOMP_RET_TRACE tracer for PTRACE_SYSCALL tracer. */ teardown_trace_fixture(_metadata, self->tracer); self->tracer = setup_trace_fixture(_metadata, tracer_ptrace, NULL, true); ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); ASSERT_EQ(0, ret); /* Install "death on getppid" filter. */ ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog, 0, 0); ASSERT_EQ(0, ret); /* Tracer will redirect getpid to getppid, and we should die. */ EXPECT_NE(self->mypid, syscall(__NR_getpid)); } #ifndef __NR_seccomp # if defined(__i386__) # define __NR_seccomp 354 # elif defined(__x86_64__) # define __NR_seccomp 317 # elif defined(__arm__) # define __NR_seccomp 383 # elif defined(__aarch64__) # define __NR_seccomp 277 # elif defined(__hppa__) # define __NR_seccomp 338 # elif defined(__powerpc__) # define __NR_seccomp 358 # elif defined(__s390__) # define __NR_seccomp 348 # else # warning "seccomp syscall number unknown for this architecture" # define __NR_seccomp 0xffff # endif #endif #ifndef SECCOMP_SET_MODE_STRICT #define SECCOMP_SET_MODE_STRICT 0 #endif #ifndef SECCOMP_SET_MODE_FILTER #define SECCOMP_SET_MODE_FILTER 1 #endif #ifndef SECCOMP_FILTER_FLAG_TSYNC #define SECCOMP_FILTER_FLAG_TSYNC 1 #endif #ifndef seccomp int seccomp(unsigned int op, unsigned int flags, void *args) { errno = 0; return syscall(__NR_seccomp, op, flags, args); } #endif TEST(seccomp_syscall) { struct sock_filter filter[] = { BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW), }; struct sock_fprog prog = { .len = (unsigned short)ARRAY_SIZE(filter), .filter = filter, }; long ret; ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); ASSERT_EQ(0, ret) { TH_LOG("Kernel does not support PR_SET_NO_NEW_PRIVS!"); } /* Reject insane operation. */ ret = seccomp(-1, 0, &prog); ASSERT_NE(ENOSYS, errno) { TH_LOG("Kernel does not support seccomp syscall!"); } EXPECT_EQ(EINVAL, errno) { TH_LOG("Did not reject crazy op value!"); } /* Reject strict with flags or pointer. */ ret = seccomp(SECCOMP_SET_MODE_STRICT, -1, NULL); EXPECT_EQ(EINVAL, errno) { TH_LOG("Did not reject mode strict with flags!"); } ret = seccomp(SECCOMP_SET_MODE_STRICT, 0, &prog); EXPECT_EQ(EINVAL, errno) { TH_LOG("Did not reject mode strict with uargs!"); } /* Reject insane args for filter. */ ret = seccomp(SECCOMP_SET_MODE_FILTER, -1, &prog); EXPECT_EQ(EINVAL, errno) { TH_LOG("Did not reject crazy filter flags!"); } ret = seccomp(SECCOMP_SET_MODE_FILTER, 0, NULL); EXPECT_EQ(EFAULT, errno) { TH_LOG("Did not reject NULL filter!"); } ret = seccomp(SECCOMP_SET_MODE_FILTER, 0, &prog); EXPECT_EQ(0, errno) { TH_LOG("Kernel does not support SECCOMP_SET_MODE_FILTER: %s", strerror(errno)); } } TEST(seccomp_syscall_mode_lock) { struct sock_filter filter[] = { BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW), }; struct sock_fprog prog = { .len = (unsigned short)ARRAY_SIZE(filter), .filter = filter, }; long ret; ret = prctl(PR_SET_NO_NEW_PRIVS, 1, NULL, 0, 0); ASSERT_EQ(0, ret) { TH_LOG("Kernel does not support PR_SET_NO_NEW_PRIVS!"); } ret = seccomp(SECCOMP_SET_MODE_FILTER, 0, &prog); ASSERT_NE(ENOSYS, errno) { TH_LOG("Kernel does not support seccomp syscall!"); } EXPECT_EQ(0, ret) { TH_LOG("Could not install filter!"); } /* Make sure neither entry point will switch to strict. */ ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_STRICT, 0, 0, 0); EXPECT_EQ(EINVAL, errno) { TH_LOG("Switched to mode strict!"); } ret = seccomp(SECCOMP_SET_MODE_STRICT, 0, NULL); EXPECT_EQ(EINVAL, errno) { TH_LOG("Switched to mode strict!"); } } TEST(TSYNC_first) { struct sock_filter filter[] = { BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW), }; struct sock_fprog prog = { .len = (unsigned short)ARRAY_SIZE(filter), .filter = filter, }; long ret; ret = prctl(PR_SET_NO_NEW_PRIVS, 1, NULL, 0, 0); ASSERT_EQ(0, ret) { TH_LOG("Kernel does not support PR_SET_NO_NEW_PRIVS!"); } ret = seccomp(SECCOMP_SET_MODE_FILTER, SECCOMP_FILTER_FLAG_TSYNC, &prog); ASSERT_NE(ENOSYS, errno) { TH_LOG("Kernel does not support seccomp syscall!"); } EXPECT_EQ(0, ret) { TH_LOG("Could not install initial filter with TSYNC!"); } } #define TSYNC_SIBLINGS 2 struct tsync_sibling { pthread_t tid; pid_t system_tid; sem_t *started; pthread_cond_t *cond; pthread_mutex_t *mutex; int diverge; int num_waits; struct sock_fprog *prog; struct __test_metadata *metadata; }; FIXTURE_DATA(TSYNC) { struct sock_fprog root_prog, apply_prog; struct tsync_sibling sibling[TSYNC_SIBLINGS]; sem_t started; pthread_cond_t cond; pthread_mutex_t mutex; int sibling_count; }; FIXTURE_SETUP(TSYNC) { struct sock_filter root_filter[] = { BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW), }; struct sock_filter apply_filter[] = { BPF_STMT(BPF_LD|BPF_W|BPF_ABS, offsetof(struct seccomp_data, nr)), BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_read, 0, 1), BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_KILL), BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW), }; memset(&self->root_prog, 0, sizeof(self->root_prog)); memset(&self->apply_prog, 0, sizeof(self->apply_prog)); memset(&self->sibling, 0, sizeof(self->sibling)); self->root_prog.filter = malloc(sizeof(root_filter)); ASSERT_NE(NULL, self->root_prog.filter); memcpy(self->root_prog.filter, &root_filter, sizeof(root_filter)); self->root_prog.len = (unsigned short)ARRAY_SIZE(root_filter); self->apply_prog.filter = malloc(sizeof(apply_filter)); ASSERT_NE(NULL, self->apply_prog.filter); memcpy(self->apply_prog.filter, &apply_filter, sizeof(apply_filter)); self->apply_prog.len = (unsigned short)ARRAY_SIZE(apply_filter); self->sibling_count = 0; pthread_mutex_init(&self->mutex, NULL); pthread_cond_init(&self->cond, NULL); sem_init(&self->started, 0, 0); self->sibling[0].tid = 0; self->sibling[0].cond = &self->cond; self->sibling[0].started = &self->started; self->sibling[0].mutex = &self->mutex; self->sibling[0].diverge = 0; self->sibling[0].num_waits = 1; self->sibling[0].prog = &self->root_prog; self->sibling[0].metadata = _metadata; self->sibling[1].tid = 0; self->sibling[1].cond = &self->cond; self->sibling[1].started = &self->started; self->sibling[1].mutex = &self->mutex; self->sibling[1].diverge = 0; self->sibling[1].prog = &self->root_prog; self->sibling[1].num_waits = 1; self->sibling[1].metadata = _metadata; } FIXTURE_TEARDOWN(TSYNC) { int sib = 0; if (self->root_prog.filter) free(self->root_prog.filter); if (self->apply_prog.filter) free(self->apply_prog.filter); for ( ; sib < self->sibling_count; ++sib) { struct tsync_sibling *s = &self->sibling[sib]; void *status; if (!s->tid) continue; if (pthread_kill(s->tid, 0)) { pthread_cancel(s->tid); pthread_join(s->tid, &status); } } pthread_mutex_destroy(&self->mutex); pthread_cond_destroy(&self->cond); sem_destroy(&self->started); } void *tsync_sibling(void *data) { long ret = 0; struct tsync_sibling *me = data; me->system_tid = syscall(__NR_gettid); pthread_mutex_lock(me->mutex); if (me->diverge) { /* Just re-apply the root prog to fork the tree */ ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, me->prog, 0, 0); } sem_post(me->started); /* Return outside of started so parent notices failures. */ if (ret) { pthread_mutex_unlock(me->mutex); return (void *)SIBLING_EXIT_FAILURE; } do { pthread_cond_wait(me->cond, me->mutex); me->num_waits = me->num_waits - 1; } while (me->num_waits); pthread_mutex_unlock(me->mutex); ret = prctl(PR_GET_NO_NEW_PRIVS, 0, 0, 0, 0); if (!ret) return (void *)SIBLING_EXIT_NEWPRIVS; read(0, NULL, 0); return (void *)SIBLING_EXIT_UNKILLED; } void tsync_start_sibling(struct tsync_sibling *sibling) { pthread_create(&sibling->tid, NULL, tsync_sibling, (void *)sibling); } TEST_F(TSYNC, siblings_fail_prctl) { long ret; void *status; struct sock_filter filter[] = { BPF_STMT(BPF_LD|BPF_W|BPF_ABS, offsetof(struct seccomp_data, nr)), BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_prctl, 0, 1), BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ERRNO | EINVAL), BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW), }; struct sock_fprog prog = { .len = (unsigned short)ARRAY_SIZE(filter), .filter = filter, }; ASSERT_EQ(0, prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0)) { TH_LOG("Kernel does not support PR_SET_NO_NEW_PRIVS!"); } /* Check prctl failure detection by requesting sib 0 diverge. */ ret = seccomp(SECCOMP_SET_MODE_FILTER, 0, &prog); ASSERT_NE(ENOSYS, errno) { TH_LOG("Kernel does not support seccomp syscall!"); } ASSERT_EQ(0, ret) { TH_LOG("setting filter failed"); } self->sibling[0].diverge = 1; tsync_start_sibling(&self->sibling[0]); tsync_start_sibling(&self->sibling[1]); while (self->sibling_count < TSYNC_SIBLINGS) { sem_wait(&self->started); self->sibling_count++; } /* Signal the threads to clean up*/ pthread_mutex_lock(&self->mutex); ASSERT_EQ(0, pthread_cond_broadcast(&self->cond)) { TH_LOG("cond broadcast non-zero"); } pthread_mutex_unlock(&self->mutex); /* Ensure diverging sibling failed to call prctl. */ pthread_join(self->sibling[0].tid, &status); EXPECT_EQ(SIBLING_EXIT_FAILURE, (long)status); pthread_join(self->sibling[1].tid, &status); EXPECT_EQ(SIBLING_EXIT_UNKILLED, (long)status); } TEST_F(TSYNC, two_siblings_with_ancestor) { long ret; void *status; ASSERT_EQ(0, prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0)) { TH_LOG("Kernel does not support PR_SET_NO_NEW_PRIVS!"); } ret = seccomp(SECCOMP_SET_MODE_FILTER, 0, &self->root_prog); ASSERT_NE(ENOSYS, errno) { TH_LOG("Kernel does not support seccomp syscall!"); } ASSERT_EQ(0, ret) { TH_LOG("Kernel does not support SECCOMP_SET_MODE_FILTER!"); } tsync_start_sibling(&self->sibling[0]); tsync_start_sibling(&self->sibling[1]); while (self->sibling_count < TSYNC_SIBLINGS) { sem_wait(&self->started); self->sibling_count++; } ret = seccomp(SECCOMP_SET_MODE_FILTER, SECCOMP_FILTER_FLAG_TSYNC, &self->apply_prog); ASSERT_EQ(0, ret) { TH_LOG("Could install filter on all threads!"); } /* Tell the siblings to test the policy */ pthread_mutex_lock(&self->mutex); ASSERT_EQ(0, pthread_cond_broadcast(&self->cond)) { TH_LOG("cond broadcast non-zero"); } pthread_mutex_unlock(&self->mutex); /* Ensure they are both killed and don't exit cleanly. */ pthread_join(self->sibling[0].tid, &status); EXPECT_EQ(0x0, (long)status); pthread_join(self->sibling[1].tid, &status); EXPECT_EQ(0x0, (long)status); } TEST_F(TSYNC, two_sibling_want_nnp) { void *status; /* start siblings before any prctl() operations */ tsync_start_sibling(&self->sibling[0]); tsync_start_sibling(&self->sibling[1]); while (self->sibling_count < TSYNC_SIBLINGS) { sem_wait(&self->started); self->sibling_count++; } /* Tell the siblings to test no policy */ pthread_mutex_lock(&self->mutex); ASSERT_EQ(0, pthread_cond_broadcast(&self->cond)) { TH_LOG("cond broadcast non-zero"); } pthread_mutex_unlock(&self->mutex); /* Ensure they are both upset about lacking nnp. */ pthread_join(self->sibling[0].tid, &status); EXPECT_EQ(SIBLING_EXIT_NEWPRIVS, (long)status); pthread_join(self->sibling[1].tid, &status); EXPECT_EQ(SIBLING_EXIT_NEWPRIVS, (long)status); } TEST_F(TSYNC, two_siblings_with_no_filter) { long ret; void *status; /* start siblings before any prctl() operations */ tsync_start_sibling(&self->sibling[0]); tsync_start_sibling(&self->sibling[1]); while (self->sibling_count < TSYNC_SIBLINGS) { sem_wait(&self->started); self->sibling_count++; } ASSERT_EQ(0, prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0)) { TH_LOG("Kernel does not support PR_SET_NO_NEW_PRIVS!"); } ret = seccomp(SECCOMP_SET_MODE_FILTER, SECCOMP_FILTER_FLAG_TSYNC, &self->apply_prog); ASSERT_NE(ENOSYS, errno) { TH_LOG("Kernel does not support seccomp syscall!"); } ASSERT_EQ(0, ret) { TH_LOG("Could install filter on all threads!"); } /* Tell the siblings to test the policy */ pthread_mutex_lock(&self->mutex); ASSERT_EQ(0, pthread_cond_broadcast(&self->cond)) { TH_LOG("cond broadcast non-zero"); } pthread_mutex_unlock(&self->mutex); /* Ensure they are both killed and don't exit cleanly. */ pthread_join(self->sibling[0].tid, &status); EXPECT_EQ(0x0, (long)status); pthread_join(self->sibling[1].tid, &status); EXPECT_EQ(0x0, (long)status); } TEST_F(TSYNC, two_siblings_with_one_divergence) { long ret; void *status; ASSERT_EQ(0, prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0)) { TH_LOG("Kernel does not support PR_SET_NO_NEW_PRIVS!"); } ret = seccomp(SECCOMP_SET_MODE_FILTER, 0, &self->root_prog); ASSERT_NE(ENOSYS, errno) { TH_LOG("Kernel does not support seccomp syscall!"); } ASSERT_EQ(0, ret) { TH_LOG("Kernel does not support SECCOMP_SET_MODE_FILTER!"); } self->sibling[0].diverge = 1; tsync_start_sibling(&self->sibling[0]); tsync_start_sibling(&self->sibling[1]); while (self->sibling_count < TSYNC_SIBLINGS) { sem_wait(&self->started); self->sibling_count++; } ret = seccomp(SECCOMP_SET_MODE_FILTER, SECCOMP_FILTER_FLAG_TSYNC, &self->apply_prog); ASSERT_EQ(self->sibling[0].system_tid, ret) { TH_LOG("Did not fail on diverged sibling."); } /* Wake the threads */ pthread_mutex_lock(&self->mutex); ASSERT_EQ(0, pthread_cond_broadcast(&self->cond)) { TH_LOG("cond broadcast non-zero"); } pthread_mutex_unlock(&self->mutex); /* Ensure they are both unkilled. */ pthread_join(self->sibling[0].tid, &status); EXPECT_EQ(SIBLING_EXIT_UNKILLED, (long)status); pthread_join(self->sibling[1].tid, &status); EXPECT_EQ(SIBLING_EXIT_UNKILLED, (long)status); } TEST_F(TSYNC, two_siblings_not_under_filter) { long ret, sib; void *status; ASSERT_EQ(0, prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0)) { TH_LOG("Kernel does not support PR_SET_NO_NEW_PRIVS!"); } /* * Sibling 0 will have its own seccomp policy * and Sibling 1 will not be under seccomp at * all. Sibling 1 will enter seccomp and 0 * will cause failure. */ self->sibling[0].diverge = 1; tsync_start_sibling(&self->sibling[0]); tsync_start_sibling(&self->sibling[1]); while (self->sibling_count < TSYNC_SIBLINGS) { sem_wait(&self->started); self->sibling_count++; } ret = seccomp(SECCOMP_SET_MODE_FILTER, 0, &self->root_prog); ASSERT_NE(ENOSYS, errno) { TH_LOG("Kernel does not support seccomp syscall!"); } ASSERT_EQ(0, ret) { TH_LOG("Kernel does not support SECCOMP_SET_MODE_FILTER!"); } ret = seccomp(SECCOMP_SET_MODE_FILTER, SECCOMP_FILTER_FLAG_TSYNC, &self->apply_prog); ASSERT_EQ(ret, self->sibling[0].system_tid) { TH_LOG("Did not fail on diverged sibling."); } sib = 1; if (ret == self->sibling[0].system_tid) sib = 0; pthread_mutex_lock(&self->mutex); /* Increment the other siblings num_waits so we can clean up * the one we just saw. */ self->sibling[!sib].num_waits += 1; /* Signal the thread to clean up*/ ASSERT_EQ(0, pthread_cond_broadcast(&self->cond)) { TH_LOG("cond broadcast non-zero"); } pthread_mutex_unlock(&self->mutex); pthread_join(self->sibling[sib].tid, &status); EXPECT_EQ(SIBLING_EXIT_UNKILLED, (long)status); /* Poll for actual task death. pthread_join doesn't guarantee it. */ while (!kill(self->sibling[sib].system_tid, 0)) sleep(0.1); /* Switch to the remaining sibling */ sib = !sib; ret = seccomp(SECCOMP_SET_MODE_FILTER, SECCOMP_FILTER_FLAG_TSYNC, &self->apply_prog); ASSERT_EQ(0, ret) { TH_LOG("Expected the remaining sibling to sync"); }; pthread_mutex_lock(&self->mutex); /* If remaining sibling didn't have a chance to wake up during * the first broadcast, manually reduce the num_waits now. */ if (self->sibling[sib].num_waits > 1) self->sibling[sib].num_waits = 1; ASSERT_EQ(0, pthread_cond_broadcast(&self->cond)) { TH_LOG("cond broadcast non-zero"); } pthread_mutex_unlock(&self->mutex); pthread_join(self->sibling[sib].tid, &status); EXPECT_EQ(0, (long)status); /* Poll for actual task death. pthread_join doesn't guarantee it. */ while (!kill(self->sibling[sib].system_tid, 0)) sleep(0.1); ret = seccomp(SECCOMP_SET_MODE_FILTER, SECCOMP_FILTER_FLAG_TSYNC, &self->apply_prog); ASSERT_EQ(0, ret); /* just us chickens */ } /* Make sure restarted syscalls are seen directly as "restart_syscall". */ TEST(syscall_restart) { long ret; unsigned long msg; pid_t child_pid; int pipefd[2]; int status; siginfo_t info = { }; struct sock_filter filter[] = { BPF_STMT(BPF_LD|BPF_W|BPF_ABS, offsetof(struct seccomp_data, nr)), #ifdef __NR_sigreturn BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_sigreturn, 6, 0), #endif BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_read, 5, 0), BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_exit, 4, 0), BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_rt_sigreturn, 3, 0), BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_nanosleep, 4, 0), BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_restart_syscall, 4, 0), /* Allow __NR_write for easy logging. */ BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_write, 0, 1), BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW), BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_KILL), /* The nanosleep jump target. */ BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_TRACE|0x100), /* The restart_syscall jump target. */ BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_TRACE|0x200), }; struct sock_fprog prog = { .len = (unsigned short)ARRAY_SIZE(filter), .filter = filter, }; #if defined(__arm__) struct utsname utsbuf; #endif ASSERT_EQ(0, pipe(pipefd)); child_pid = fork(); ASSERT_LE(0, child_pid); if (child_pid == 0) { /* Child uses EXPECT not ASSERT to deliver status correctly. */ char buf = ' '; struct timespec timeout = { }; /* Attach parent as tracer and stop. */ EXPECT_EQ(0, ptrace(PTRACE_TRACEME)); EXPECT_EQ(0, raise(SIGSTOP)); EXPECT_EQ(0, close(pipefd[1])); EXPECT_EQ(0, prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0)) { TH_LOG("Kernel does not support PR_SET_NO_NEW_PRIVS!"); } ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog, 0, 0); EXPECT_EQ(0, ret) { TH_LOG("Failed to install filter!"); } EXPECT_EQ(1, read(pipefd[0], &buf, 1)) { TH_LOG("Failed to read() sync from parent"); } EXPECT_EQ('.', buf) { TH_LOG("Failed to get sync data from read()"); } /* Start nanosleep to be interrupted. */ timeout.tv_sec = 1; errno = 0; EXPECT_EQ(0, nanosleep(&timeout, NULL)) { TH_LOG("Call to nanosleep() failed (errno %d)", errno); } /* Read final sync from parent. */ EXPECT_EQ(1, read(pipefd[0], &buf, 1)) { TH_LOG("Failed final read() from parent"); } EXPECT_EQ('!', buf) { TH_LOG("Failed to get final data from read()"); } /* Directly report the status of our test harness results. */ syscall(__NR_exit, _metadata->passed ? EXIT_SUCCESS : EXIT_FAILURE); } EXPECT_EQ(0, close(pipefd[0])); /* Attach to child, setup options, and release. */ ASSERT_EQ(child_pid, waitpid(child_pid, &status, 0)); ASSERT_EQ(true, WIFSTOPPED(status)); ASSERT_EQ(0, ptrace(PTRACE_SETOPTIONS, child_pid, NULL, PTRACE_O_TRACESECCOMP)); ASSERT_EQ(0, ptrace(PTRACE_CONT, child_pid, NULL, 0)); ASSERT_EQ(1, write(pipefd[1], ".", 1)); /* Wait for nanosleep() to start. */ ASSERT_EQ(child_pid, waitpid(child_pid, &status, 0)); ASSERT_EQ(true, WIFSTOPPED(status)); ASSERT_EQ(SIGTRAP, WSTOPSIG(status)); ASSERT_EQ(PTRACE_EVENT_SECCOMP, (status >> 16)); ASSERT_EQ(0, ptrace(PTRACE_GETEVENTMSG, child_pid, NULL, &msg)); ASSERT_EQ(0x100, msg); EXPECT_EQ(__NR_nanosleep, get_syscall(_metadata, child_pid)); /* Might as well check siginfo for sanity while we're here. */ ASSERT_EQ(0, ptrace(PTRACE_GETSIGINFO, child_pid, NULL, &info)); ASSERT_EQ(SIGTRAP, info.si_signo); ASSERT_EQ(SIGTRAP | (PTRACE_EVENT_SECCOMP << 8), info.si_code); EXPECT_EQ(0, info.si_errno); EXPECT_EQ(getuid(), info.si_uid); /* Verify signal delivery came from child (seccomp-triggered). */ EXPECT_EQ(child_pid, info.si_pid); /* Interrupt nanosleep with SIGSTOP (which we'll need to handle). */ ASSERT_EQ(0, kill(child_pid, SIGSTOP)); ASSERT_EQ(0, ptrace(PTRACE_CONT, child_pid, NULL, 0)); ASSERT_EQ(child_pid, waitpid(child_pid, &status, 0)); ASSERT_EQ(true, WIFSTOPPED(status)); ASSERT_EQ(SIGSTOP, WSTOPSIG(status)); /* Verify signal delivery came from parent now. */ ASSERT_EQ(0, ptrace(PTRACE_GETSIGINFO, child_pid, NULL, &info)); EXPECT_EQ(getpid(), info.si_pid); /* Restart nanosleep with SIGCONT, which triggers restart_syscall. */ ASSERT_EQ(0, kill(child_pid, SIGCONT)); ASSERT_EQ(0, ptrace(PTRACE_CONT, child_pid, NULL, 0)); ASSERT_EQ(child_pid, waitpid(child_pid, &status, 0)); ASSERT_EQ(true, WIFSTOPPED(status)); ASSERT_EQ(SIGCONT, WSTOPSIG(status)); ASSERT_EQ(0, ptrace(PTRACE_CONT, child_pid, NULL, 0)); /* Wait for restart_syscall() to start. */ ASSERT_EQ(child_pid, waitpid(child_pid, &status, 0)); ASSERT_EQ(true, WIFSTOPPED(status)); ASSERT_EQ(SIGTRAP, WSTOPSIG(status)); ASSERT_EQ(PTRACE_EVENT_SECCOMP, (status >> 16)); ASSERT_EQ(0, ptrace(PTRACE_GETEVENTMSG, child_pid, NULL, &msg)); ASSERT_EQ(0x200, msg); ret = get_syscall(_metadata, child_pid); #if defined(__arm__) /* * FIXME: * - native ARM registers do NOT expose true syscall. * - compat ARM registers on ARM64 DO expose true syscall. */ ASSERT_EQ(0, uname(&utsbuf)); if (strncmp(utsbuf.machine, "arm", 3) == 0) { EXPECT_EQ(__NR_nanosleep, ret); } else #endif { EXPECT_EQ(__NR_restart_syscall, ret); } /* Write again to end test. */ ASSERT_EQ(0, ptrace(PTRACE_CONT, child_pid, NULL, 0)); ASSERT_EQ(1, write(pipefd[1], "!", 1)); EXPECT_EQ(0, close(pipefd[1])); ASSERT_EQ(child_pid, waitpid(child_pid, &status, 0)); if (WIFSIGNALED(status) || WEXITSTATUS(status)) _metadata->passed = 0; } /* * TODO: * - add microbenchmarks * - expand NNP testing * - better arch-specific TRACE and TRAP handlers. * - endianness checking when appropriate * - 64-bit arg prodding * - arch value testing (x86 modes especially) * - ... */ TEST_HARNESS_MAIN