summaryrefslogtreecommitdiff
path: root/sound/soc/omap/omap-dmic.h
blob: 231e728bff0e7e21870e81c0fce85e9a616b9868 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
/*
 * omap-dmic.h  --  OMAP Digital Microphone Controller
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#ifndef _OMAP_DMIC_H
#define _OMAP_DMIC_H

#define OMAP_DMIC_REVISION_REG		0x00
#define OMAP_DMIC_SYSCONFIG_REG		0x10
#define OMAP_DMIC_IRQSTATUS_RAW_REG	0x24
#define OMAP_DMIC_IRQSTATUS_REG		0x28
#define OMAP_DMIC_IRQENABLE_SET_REG	0x2C
#define OMAP_DMIC_IRQENABLE_CLR_REG	0x30
#define OMAP_DMIC_IRQWAKE_EN_REG	0x34
#define OMAP_DMIC_DMAENABLE_SET_REG	0x38
#define OMAP_DMIC_DMAENABLE_CLR_REG	0x3C
#define OMAP_DMIC_DMAWAKEEN_REG		0x40
#define OMAP_DMIC_CTRL_REG		0x44
#define OMAP_DMIC_DATA_REG		0x48
#define OMAP_DMIC_FIFO_CTRL_REG		0x4C
#define OMAP_DMIC_FIFO_DMIC1R_DATA_REG	0x50
#define OMAP_DMIC_FIFO_DMIC1L_DATA_REG	0x54
#define OMAP_DMIC_FIFO_DMIC2R_DATA_REG	0x58
#define OMAP_DMIC_FIFO_DMIC2L_DATA_REG	0x5C
#define OMAP_DMIC_FIFO_DMIC3R_DATA_REG	0x60
#define OMAP_DMIC_FIFO_DMIC3L_DATA_REG	0x64

/* IRQSTATUS_RAW, IRQSTATUS, IRQENABLE_SET, IRQENABLE_CLR bit fields */
#define OMAP_DMIC_IRQ			(1 << 0)
#define OMAP_DMIC_IRQ_FULL		(1 << 1)
#define OMAP_DMIC_IRQ_ALMST_EMPTY	(1 << 2)
#define OMAP_DMIC_IRQ_EMPTY		(1 << 3)
#define OMAP_DMIC_IRQ_MASK		0x07

/* DMIC_DMAENABLE bit fields */
#define OMAP_DMIC_DMA_ENABLE		0x1

/* DMIC_CTRL bit fields */
#define OMAP_DMIC_UP1_ENABLE		(1 << 0)
#define OMAP_DMIC_UP2_ENABLE		(1 << 1)
#define OMAP_DMIC_UP3_ENABLE		(1 << 2)
#define OMAP_DMIC_UP_ENABLE_MASK	0x7
#define OMAP_DMIC_FORMAT		(1 << 3)
#define OMAP_DMIC_POLAR1		(1 << 4)
#define OMAP_DMIC_POLAR2		(1 << 5)
#define OMAP_DMIC_POLAR3		(1 << 6)
#define OMAP_DMIC_POLAR_MASK		(0x7 << 4)
#define OMAP_DMIC_CLK_DIV(x)		(((x) & 0x7) << 7)
#define OMAP_DMIC_CLK_DIV_MASK		(0x7 << 7)
#define	OMAP_DMIC_RESET			(1 << 10)

#define OMAP_DMICOUTFORMAT_LJUST	(0 << 3)
#define OMAP_DMICOUTFORMAT_RJUST	(1 << 3)

/* DMIC_FIFO_CTRL bit fields */
#define OMAP_DMIC_THRES_MAX		0xF

enum omap_dmic_clk {
	OMAP_DMIC_SYSCLK_PAD_CLKS,		/* PAD_CLKS */
	OMAP_DMIC_SYSCLK_SLIMBLUS_CLKS,		/* SLIMBUS_CLK */
	OMAP_DMIC_SYSCLK_SYNC_MUX_CLKS,		/* DMIC_SYNC_MUX_CLK */
	OMAP_DMIC_ABE_DMIC_CLK,			/* abe_dmic_clk */
};

#endif
) [ 240.341073] [<c02f0984>] (mmc_flush_cache) from [<c02ff0c4>] (mmc_blk_issue_rq+0x114/0x4e8) [ 240.349459] [<c02ff0c4>] (mmc_blk_issue_rq) from [<c03008d4>] (mmc_queue_thread+0xc0/0x180) [ 240.357844] [<c03008d4>] (mmc_queue_thread) from [<c003cf90>] (kthread+0xdc/0xf4) [ 240.365339] [<c003cf90>] (kthread) from [<c0010068>] (ret_from_fork+0x14/0x2c) .. .. [ 240.664311] INFO: task partprobe:564 blocked for more than 120 seconds. [ 240.670943] Not tainted 4.1.13-00510-g9d91424 #2 [ 240.676078] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 240.683922] partprobe D c047504c 0 564 486 0x00000000 [ 240.690318] [<c047504c>] (__schedule) from [<c04754a0>] (schedule+0x40/0x98) [ 240.697396] [<c04754a0>] (schedule) from [<c0477d40>] (schedule_timeout+0x148/0x188) [ 240.705149] [<c0477d40>] (schedule_timeout) from [<c0476040>] (wait_for_common+0xa4/0x170) [ 240.713446] [<c0476040>] (wait_for_common) from [<c01f3300>] (submit_bio_wait+0x58/0x64) [ 240.721571] [<c01f3300>] (submit_bio_wait) from [<c01fbbd8>] (blkdev_issue_flush+0x60/0x88) [ 240.729957] [<c01fbbd8>] (blkdev_issue_flush) from [<c010ff84>] (blkdev_fsync+0x34/0x44) [ 240.738083] [<c010ff84>] (blkdev_fsync) from [<c0109594>] (do_fsync+0x3c/0x64) [ 240.745319] [<c0109594>] (do_fsync) from [<c000ffc0>] (ret_fast_syscall+0x0/0x3c) .. Here is the detailed sequence showing when this issue may happen: 1) At probe time, mmci device is initialized and card busy detection based on DAT[0] monitoring is enabled. 2) Later during run time, since card reported to support internal caches, a MMCI_SWITCH command is sent to eMMC device with FLUSH_CACHE operation. On receiving this command, eMMC may enter busy state (for a relatively short time in the case of the dead-lock). 3) Then mmci interrupt is raised and mmci_irq() is called: MMCISTATUS register is read and is equal to 0x01000440. So the following status bits are set: - MCI_CMDRESPEND (= 6) - MCI_DATABLOCKEND (= 10) - MCI_ST_CARDBUSY (= 24) Since MMCIMASK0 register is 0x3FF, status variable is set to 0x00000040 and BIT MCI_CMDRESPEND is cleared by writing MMCICLEAR register. Then mmci_cmd_irq() is called. Considering the following conditions: - host->busy_status is 0, - this is a "busy response", - reading again MMCISTATUS register gives 0x1000400, MMCIMASK0 is updated to unmask MCI_ST_BUSYEND bit. Thus, MMCIMASK0 is set to 0x010003FF and host->busy_status is set to wait for busy end completion. Back again in status loop of mmci_irq(), we quickly go through mmci_data_irq() as there are no data in that case. And we finally go through following test at the end of while(status) loop: /* * Don't poll for busy completion in irq context. */ if (host->variant->busy_detect && host->busy_status) status &= ~host->variant->busy_detect_flag; Because status variable is not yet null (is equal to 0x40), we do not leave interrupt context yet but we loop again into while(status) loop. So we run across following steps: a) MMCISTATUS register is read again and this time is equal to 0x01000400. So that following bits are set: - MCI_DATABLOCKEND (= 10) - MCI_ST_CARDBUSY (= 24) Since MMCIMASK0 register is equal to 0x010003FF: b) status variable is set to 0x01000000. c) MCI_ST_CARDBUSY bit is cleared by writing MMCICLEAR register. Then, mmci_cmd_irq() is called one more time. Since host->busy_status is set and that MCI_ST_CARDBUSY is set in status variable, we just return from this function. Back again in mmci_irq(), status variable is set to 0 and we finally leave the while(status) loop. As a result we leave interrupt context, waiting for busy end interrupt event. Now, consider that busy end completion is raised IN BETWEEN steps 3.a) and 3.c). In such a case, we may mistakenly clear busy end interrupt at step 3.c) while it has not yet been processed. This will result in mmc command to wait forever for a busy end completion that will never happen. To fix the problem, this patch implements the following changes: Considering that the mmci seems to be triggering the IRQ on both edges while monitoring DAT0 for busy completion and that same status bit is used to monitor start and end of busy detection, special care must be taken to make sure that both start and end interrupts are always cleared one after the other. 1) Clearing of card busy bit is moved in mmc_cmd_irq() function where unmasking of busy end bit is effectively handled. 2) Just before unmasking busy end event, busy start event is cleared by writing card busy bit in MMCICLEAR register. 3) Finally, once we are no more busy with a command, busy end event is cleared writing again card busy bit in MMCICLEAR register. This patch has been tested with the ST Accordo5 machine, not yet supported upstream but relies on the mmci driver. Signed-off-by: Sarang Mairal <sarang.mairal@garmin.com> Signed-off-by: Jean-Nicolas Graux <jean-nicolas.graux@st.com> Reviewed-by: Linus Walleij <linus.walleij@linaro.org> Tested-by: Ulf Hansson <ulf.hansson@linaro.org> Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
Diffstat (limited to 'drivers/usb/chipidea/Kconfig')