/* * netsniff-ng - the packet sniffing beast * Copyright 2009, 2010 Daniel Borkmann. * Subject to the GPL, version 2. */ #include #include #include /* for ntohs() */ #include #include "proto.h" #include "protos.h" #include "lookup.h" #include "pkt_buff.h" #include "built_in.h" struct arphdr { uint16_t ar_hrd; /* format of hardware address */ uint16_t ar_pro; /* format of protocol address */ uint8_t ar_hln; /* length of hardware address */ uint8_t ar_pln; /* length of protocol address */ uint16_t ar_op; /* ARP opcode (command) */ uint8_t ar_sha[6]; /* sender hardware address */ uint8_t ar_sip[4]; /* sender IP address */ uint8_t ar_tha[6]; /* target hardware address */ uint8_t ar_tip[4]; /* target IP address */ } __packed; #define ARPHRD_ETHER 1 #define ARPHRD_IEEE802 6 #define ARPHRD_ARCNET 7 #define ARPHRD_ATM 16 #define ARPHRD_ATM2 19 #define ARPHRD_SERIAL 20 #define ARPHRD_ATM3 21 #define ARPHRD_IEEE1394 24 #define ARPOP_REQUEST 1 /* ARP request */ #define ARPOP_REPLY 2 /* ARP reply */ #define ARPOP_RREQUEST 3 /* RARP request */ #define ARPOP_RREPLY 4 /* RARP reply */ #define ARPOP_InREQUEST 8 /* InARP request */ #define ARPOP_InREPLY 9 /* InARP reply */ #define ARPOP_NAK 10 /* (ATM)ARP NAK */ enum addr_direct { ADDR_SENDER, ADDR_TARGET, }; static void arp_print_addrs(struct arphdr *arp, enum addr_direct addr_dir) { const char *dir = addr_dir == ADDR_SENDER ? "Sender" : "Target"; if (ntohs(arp->ar_hrd) == ARPHRD_ETHER) { uint8_t *mac; mac = addr_dir == ADDR_SENDER ? &arp->ar_sha[0] : &arp->ar_tha[0]; tprintf(", %s MAC (%.2x:%.2x:%.2x:%.2x:%.2x:%.2x)", dir, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]); } if (ntohs(arp->ar_pro) == ETH_P_IP) { char ip_str[INET_ADDRSTRLEN]; uint32_t ip; if (addr_dir == ADDR_SENDER) ip = *(uint32_t *)&arp->ar_sip[0]; else ip = *(uint32_t *)&arp->ar_tip[0]; inet_ntop(AF_INET, &ip, ip_str, sizeof(ip_str)); tprintf(", %s IP (%s)", dir, ip_str); } } static void arp(struct pkt_buff *pkt) { char *hrd; const char *pro; char *opcode; struct arphdr *arp = (struct arphdr *) pkt_pull(pkt, sizeof(*arp)); if (arp == NULL) return; switch (ntohs(arp->ar_hrd)) { case ARPHRD_ETHER: hrd = "Ethernet"; break; case ARPHRD_IEEE802: hrd = "IEEE 802"; break; case ARPHRD_ARCNET: hrd = "ARCNET"; break; case ARPHRD_ATM: case ARPHRD_ATM2: case ARPHRD_ATM3: hrd = "ATM"; break; case ARPHRD_SERIAL: hrd = "Serial Line"; break; case ARPHRD_IEEE1394: hrd = "IEEE 1394.1995"; break; default: hrd = "Unknown"; break; } pro = lookup_ether_type(ntohs(arp->ar_pro)); if (pro == NULL) pro = "Unknown"; switch (ntohs(arp->ar_op)) { case ARPOP_REQUEST: opcode = "ARP request"; break; case ARPOP_REPLY: opcode = "ARP reply"; break; case ARPOP_RREQUEST: opcode = "RARP request"; break; case ARPOP_RREPLY: opcode = "RARP reply"; break; case ARPOP_InREQUEST: opcode = "InARP request"; break; case ARPOP_InREPLY: opcode = "InARP reply"; break; case ARPOP_NAK: opcode = "(ATM) ARP NAK"; break; default: opcode = "Unknown"; break; }; tprintf(" [ ARP "); tprintf("Format HA (%u => %s), ", ntohs(arp->ar_hrd), hrd); tprintf("Format Proto (0x%.4x => %s), ", ntohs(arp->ar_pro), pro); tprintf("HA Len (%u), ", arp->ar_hln); tprintf("Proto Len (%u), ", arp->ar_pln); tprintf("Opcode (%u => %s)", ntohs(arp->ar_op), opcode); arp_print_addrs(arp, ADDR_SENDER); arp_print_addrs(arp, ADDR_TARGET); tprintf(" ]\n"); } static void arp_less(struct pkt_buff *pkt) { char *opcode = NULL; struct arphdr *arp = (struct arphdr *) pkt_pull(pkt, sizeof(*arp)); if (arp == NULL) return; switch (ntohs(arp->ar_op)) { case ARPOP_REQUEST: opcode = "ARP request"; break; case ARPOP_REPLY: opcode = "ARP reply"; break; case ARPOP_RREQUEST: opcode = "RARP request"; break; case ARPOP_RREPLY: opcode = "RARP reply"; break; case ARPOP_InREQUEST: opcode = "InARP request"; break; case ARPOP_InREPLY: opcode = "InARP reply"; break; case ARPOP_NAK: opcode = "(ATM) ARP NAK"; break; default: opcode = "Unknown"; break; }; tprintf(" Op %s", opcode); } struct protocol arp_ops = { .key = 0x0806, .print_full = arp, .print_less = arp_less, }; fo'> authorBenjamin Herrenschmidt <benh@kernel.crashing.org>2017-02-03 17:10:28 +1100 committerMichael Ellerman <mpe@ellerman.id.au>2017-02-08 23:36:29 +1100 commitd7df2443cd5f67fc6ee7c05a88e4996e8177f91b (patch) tree098a7c0ca4fceb8a65cb1f693c9d71990388933d /net/rxrpc/key.c parenta0615a16f7d0ceb5804d295203c302d496d8ee91 (diff)
powerpc/mm: Fix spurrious segfaults on radix with autonuma
When autonuma (Automatic NUMA balancing) marks a PTE inaccessible it clears all the protection bits but leave the PTE valid. With the Radix MMU, an attempt at executing from such a PTE will take a fault with bit 35 of SRR1 set "SRR1_ISI_N_OR_G". It is thus incorrect to treat all such faults as errors. We should pass them to handle_mm_fault() for autonuma to deal with. The case of pages that are really not executable is handled by the existing test for VM_EXEC further down. That leaves us with catching the kernel attempts at executing user pages. We can catch that earlier, even before we do find_vma. It is never valid on powerpc for the kernel to take an exec fault to begin with. So fold that test with the existing test for the kernel faulting on kernel addresses to bail out early. Fixes: 1d18ad026844 ("powerpc/mm: Detect instruction fetch denied and report") Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Balbir Singh <bsingharora@gmail.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Diffstat (limited to 'net/rxrpc/key.c')