summaryrefslogtreecommitdiff
path: root/drivers/usb/serial
diff options
context:
space:
mode:
authorMasami Hiramatsu <mhiramat@kernel.org>2017-01-11 14:59:38 +0900
committerArnaldo Carvalho de Melo <acme@redhat.com>2017-01-16 15:14:06 -0300
commitd2d4edbebe07ddb77980656abe7b9bc7a9e0cdf7 (patch)
treef9b19e1edded426069b9d77876c7ce08b9095882 /drivers/usb/serial
parent18e7a45af91acdde99d3aa1372cc40e1f8142f7b (diff)
perf probe: Fix to show correct locations for events on modules
Fix to show correct locations for events on modules by relocating given address instead of retrying after failure. This happens when the module text size is big enough, bigger than sh_addr, because the original code retries with given address + sh_addr if it failed to find CU DIE at the given address. Any address smaller than sh_addr always fails and it retries with the correct address, but addresses bigger than sh_addr will get a CU DIE which is on the given address (not adjusted by sh_addr). In my environment(x86-64), the sh_addr of ".text" section is 0x10030. Since i915 is a huge kernel module, we can see this issue as below. $ grep "[Tt] .*\[i915\]" /proc/kallsyms | sort | head -n1 ffffffffc0270000 t i915_switcheroo_can_switch [i915] ffffffffc0270000 + 0x10030 = ffffffffc0280030, so we'll check symbols cross this boundary. $ grep "[Tt] .*\[i915\]" /proc/kallsyms | grep -B1 ^ffffffffc028\ | head -n 2 ffffffffc027ff80 t haswell_init_clock_gating [i915] ffffffffc0280110 t valleyview_init_clock_gating [i915] So setup probes on both function and see what happen. $ sudo ./perf probe -m i915 -a haswell_init_clock_gating \ -a valleyview_init_clock_gating Added new events: probe:haswell_init_clock_gating (on haswell_init_clock_gating in i915) probe:valleyview_init_clock_gating (on valleyview_init_clock_gating in i915) You can now use it in all perf tools, such as: perf record -e probe:valleyview_init_clock_gating -aR sleep 1 $ sudo ./perf probe -l probe:haswell_init_clock_gating (on haswell_init_clock_gating@gpu/drm/i915/intel_pm.c in i915) probe:valleyview_init_clock_gating (on i915_vga_set_decode:4@gpu/drm/i915/i915_drv.c in i915) As you can see, haswell_init_clock_gating is correctly shown, but valleyview_init_clock_gating is not. With this patch, both events are shown correctly. $ sudo ./perf probe -l probe:haswell_init_clock_gating (on haswell_init_clock_gating@gpu/drm/i915/intel_pm.c in i915) probe:valleyview_init_clock_gating (on valleyview_init_clock_gating@gpu/drm/i915/intel_pm.c in i915) Committer notes: In my case: # perf probe -m i915 -a haswell_init_clock_gating -a valleyview_init_clock_gating Added new events: probe:haswell_init_clock_gating (on haswell_init_clock_gating in i915) probe:valleyview_init_clock_gating (on valleyview_init_clock_gating in i915) You can now use it in all perf tools, such as: perf record -e probe:valleyview_init_clock_gating -aR sleep 1 # perf probe -l probe:haswell_init_clock_gating (on i915_getparam+432@gpu/drm/i915/i915_drv.c in i915) probe:valleyview_init_clock_gating (on __i915_printk+240@gpu/drm/i915/i915_drv.c in i915) # # readelf -SW /lib/modules/4.9.0+/build/vmlinux | egrep -w '.text|Name' [Nr] Name Type Address Off Size ES Flg Lk Inf Al [ 1] .text PROGBITS ffffffff81000000 200000 822fd3 00 AX 0 0 4096 # So both are b0rked, now with the fix: # perf probe -m i915 -a haswell_init_clock_gating -a valleyview_init_clock_gating Added new events: probe:haswell_init_clock_gating (on haswell_init_clock_gating in i915) probe:valleyview_init_clock_gating (on valleyview_init_clock_gating in i915) You can now use it in all perf tools, such as: perf record -e probe:valleyview_init_clock_gating -aR sleep 1 # perf probe -l probe:haswell_init_clock_gating (on haswell_init_clock_gating@gpu/drm/i915/intel_pm.c in i915) probe:valleyview_init_clock_gating (on valleyview_init_clock_gating@gpu/drm/i915/intel_pm.c in i915) # Both looks correct. Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/148411436777.9978.1440275861947194930.stgit@devbox Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Diffstat (limited to 'drivers/usb/serial')
0 files changed, 0 insertions, 0 deletions
relatively short time in the case of the dead-lock). 3) Then mmci interrupt is raised and mmci_irq() is called: MMCISTATUS register is read and is equal to 0x01000440. So the following status bits are set: - MCI_CMDRESPEND (= 6) - MCI_DATABLOCKEND (= 10) - MCI_ST_CARDBUSY (= 24) Since MMCIMASK0 register is 0x3FF, status variable is set to 0x00000040 and BIT MCI_CMDRESPEND is cleared by writing MMCICLEAR register. Then mmci_cmd_irq() is called. Considering the following conditions: - host->busy_status is 0, - this is a "busy response", - reading again MMCISTATUS register gives 0x1000400, MMCIMASK0 is updated to unmask MCI_ST_BUSYEND bit. Thus, MMCIMASK0 is set to 0x010003FF and host->busy_status is set to wait for busy end completion. Back again in status loop of mmci_irq(), we quickly go through mmci_data_irq() as there are no data in that case. And we finally go through following test at the end of while(status) loop: /* * Don't poll for busy completion in irq context. */ if (host->variant->busy_detect && host->busy_status) status &= ~host->variant->busy_detect_flag; Because status variable is not yet null (is equal to 0x40), we do not leave interrupt context yet but we loop again into while(status) loop. So we run across following steps: a) MMCISTATUS register is read again and this time is equal to 0x01000400. So that following bits are set: - MCI_DATABLOCKEND (= 10) - MCI_ST_CARDBUSY (= 24) Since MMCIMASK0 register is equal to 0x010003FF: b) status variable is set to 0x01000000. c) MCI_ST_CARDBUSY bit is cleared by writing MMCICLEAR register. Then, mmci_cmd_irq() is called one more time. Since host->busy_status is set and that MCI_ST_CARDBUSY is set in status variable, we just return from this function. Back again in mmci_irq(), status variable is set to 0 and we finally leave the while(status) loop. As a result we leave interrupt context, waiting for busy end interrupt event. Now, consider that busy end completion is raised IN BETWEEN steps 3.a) and 3.c). In such a case, we may mistakenly clear busy end interrupt at step 3.c) while it has not yet been processed. This will result in mmc command to wait forever for a busy end completion that will never happen. To fix the problem, this patch implements the following changes: Considering that the mmci seems to be triggering the IRQ on both edges while monitoring DAT0 for busy completion and that same status bit is used to monitor start and end of busy detection, special care must be taken to make sure that both start and end interrupts are always cleared one after the other. 1) Clearing of card busy bit is moved in mmc_cmd_irq() function where unmasking of busy end bit is effectively handled. 2) Just before unmasking busy end event, busy start event is cleared by writing card busy bit in MMCICLEAR register. 3) Finally, once we are no more busy with a command, busy end event is cleared writing again card busy bit in MMCICLEAR register. This patch has been tested with the ST Accordo5 machine, not yet supported upstream but relies on the mmci driver. Signed-off-by: Sarang Mairal <sarang.mairal@garmin.com> Signed-off-by: Jean-Nicolas Graux <jean-nicolas.graux@st.com> Reviewed-by: Linus Walleij <linus.walleij@linaro.org> Tested-by: Ulf Hansson <ulf.hansson@linaro.org> Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
Diffstat (limited to 'drivers/usb/dwc2/debugfs.c')